
Oct2003cover.qxd 9/4/03 10:39 AM Page 1

An Information Architecture Strategy
Learn how to design an information architecture that provides the right information,
in the right format, to the right person, at the right time, all through a secure access.
by John Wunder and Dr. Will Tracz

Warfighter’s Access to Geospatial Intelligence
The National System for Geospatial Intelligence has met the challenge to integrate
disparate information sources and provide a common user view into imagery data.
by Peter Winter

Effective Collaboration: People Augmented by Technology
This article uses a real-world example of collaboration between people and smart devices
in a teaching environment that is adaptable to the global community.
by Richard L. Conn

Serialized Maintenance Data Collection Using DRILS
The Defense Repair Information Logistics System is a specialized Web-based application to collect, store,
and retrieve Air Force depot and field maintenance data that especially benefits data entry personnel.
by Capt. Greg Lindsey and Kevin Berk

The Documentation Diet
This article discusses strategies you can use to make documentation work for you, including examples of
project and process documentation.
by Neil Potter and Mary Sakry

Software Architecture as a Combination of Patterns
These authors discuss how they used four design patterns to construct a radar system that can withstand
the replacement of hardware and operating system software, and is adaptable to different requirements.
by Kent Petersson, Tobias Persson, and Dr. Bo I. Sanden

Introducing Global Software Competitiveness
by Don O’Neill

Data Warehouse: Your Gateway to the Information Age
by Kelly L. Smith

Cover Design by
Kent Bingham.

3

11

20

30

31

DeparDepar tmentstments

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering October 2003

4

8

12

16

21

25

29

Best Best PracticesPractices

From the Publisher

Top 5 Award Nomination
Information

Coming Events

Web Sites

Letter to the Editor

BackTalk

CrossTalk
Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions. Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

SPONSOR

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

CRSIP ONLINE

Lt. Col. Glenn A. Palmer

Tracy Stauder

Elizabeth Starrett

Pamela S. Bowers

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 586-0095
(801) 777-8069
crosstalk.staff@hill.af.mil
www.stsc.hill.af.mil/
crosstalk

www.crsip.hill.af.mil

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 24.

Ogden ALC/MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

InfInformationormation SharingSharing

Online Online ArArticlesticles

PPolicies,olicies, NeNews,ws, andand UpdatesUpdatesSoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

From the Publisher

This month’s CrossTalk theme is centered on information sharing and data man-
agement. The relationship between data contained in a database and informational

needs for today’s complex computer-driven systems is the subject of our lead article from
John Wunder and Dr. Will Tracz. In An Information Architecture Strategy, these authors
explain how information architecture is a hierarchy of products and services organized
to assure the timely and accurate delivery and storage of data and information across an
entire enterprise. The article describes the components of an information architecture

strategy using examples from the Global Combat Support System-Air Force’s Enterprise
Architecture, currently under development.

A system that is used heavily in the war against terrorism is described in the article Warfighter’s
Access to Geospatial Intelligence. Author Peter Winter explains the use of the Information Access
Services tool developed by the Harris Corporation to provide timely, relevant, and accurate
imagery, imagery intelligence, and geospatial information to our warfighters. Although the National
Imagery and Mapping Agency has terabytes of imagery and intelligence information available, get-
ting the right data, at the right time, to the right user is the challenge described in this article.

In his article Effective Collaboration: People Augmented by Technology, Richard L. Conn delves into the
world of collaboration for development in today’s world of increasingly complex software-inten-
sive, mission-critical systems. He mentions how the development of the Joint Strike Fighter F-35
uses a Web-based information portal server as an example requiring collaboration of major con-
tractors with subcontractors distributed across several countries. He goes into explicit detail with
another example using classroom education of 100 students from 24 different countries to
describe some of the current capabilities available for collaboration.

The article Serialized Maintenance Data Collection Using DRILS by Capt. Greg Lindsey and Kevin
Berk describes a specialized Web-based application that has been successfully used to dramatically
reduce the sustainment costs of the Air Force F-16 fighter. They explain that the key to success-
ful cost reduction sustainment programs is to have a user-friendly, data-gathering capability that
provides the supply chain manager with dependable part consumption data, as well as the infor-
mation needed to identify and correct troublesome components in any complex weapon system.

Have you ever worked on a project where the document requirements did not make sense and
seemed to be irrelevant, non-productive paper stacks? In The Documentation Diet, authors Neil Potter
and Mary Sakry give an analysis of how inappropriate documentation can creep into and strangle
a project. They elaborate on a list of several viable techniques for making your documentation
strictly practical. If you hate project and process documentation, then read this and review how to
put your documentation requirements on a diet.

In our supporting article, Software Architecture as a Combination of Patterns, authors Kent
Petersson, Tobias Persson, and Dr. Bo I. Sanden recount their efforts in the creation of a unique
software architecture to solve the requirement for a highly adaptable radar system. The radar had
to handle the needs of different customer requirements in an environment of hardware and oper-
ating system replacement.

Lastly we bring you two online articles this month. Author Don O’Neill outlines a vision to
achieve global competitiveness in Introducing Global Software Competitiveness. He explains that software
competitiveness revolves around how the software work force is used to achieve customer satis-
faction, how innovation is essential to delivering customer value, and how strategic software man-
agement guards against event threats. In Data Warehouse: Your Gateway to the Information Age, Kelly L.
Smith gives new hope to those searching for a simple data storage solution, and describes the chal-
lenge of integrating today’s data storage systems with those from the ‘70s and ‘80s.

We hope this selection of articles provides you with a new perspective on the management of
increasing amounts of data in today’s complex computer-driven enterprises. Our goal is that per-
haps one or two good ideas on how to solve a current data dilemma are found in this issue.

Developers Meet a Variety of Complex
Information and Data Sharing Needs

October 2003 www.stsc.hill.af.mil 3

H. Bruce Allgood
Director, Computer Resources Support Improvement Program

Information Sharing

4 CROSSTALK The Journal of Defense Software Engineering October 2003

An Information Architecture Strategy

Information architectures play a strategic role in facilitating the efficient and effective storage, retrieval, and analysis of data
in enterprise information systems. An information architecture consists of more than just data and the commercial off-the-
shelf products in which it is stored. To provide the right information, in the right format, to the right person, at the right time,
and to protect that information from unauthorized access, a robust information architecture strategy is necessary. This is also
essential to establish data stewards, governance boards, and metrics to support the processes that describe sequences of infor-
mation services that access the stored data.

This article describes an information
architecture strategy1, which by defini-

tion focuses on information, not data.
Therefore, the scope of the architecture
strategy extends beyond the physical archi-
tecture consisting of data, databases, data
warehouses, and data marts, to the opera-
tional architecture focused on the process-
es that turn the data into information and
facilitate the generation and manipulation
of that information. The overarching goal
of this strategy is to provide the end user
with access to timely, accurate, and trusted
information.

In the case of the Global Combat
Support System-Air Force (GCSS-AF), the
information architecture provides the tools
to turn data from a myriad of systems into
information, from information into knowl-
edge, and from knowledge into power.
This results in information superiority and
reduced decision cycles across all Air Force
echelons and operational theaters.

An information architecture provides
easy storage, access, and retrieval of infor-

mation. For example, it enables authorized
airmen to access, from any location, such
diverse data as the budget information for
Wright-Patterson Air Force Base, the
engine status at Lakenheath Air Base, or all
the personnel deployed in an aerospace
expeditionary force, all through a Web
browser connected to the Department of
Defense infrastructure.

This article first describes the key terms
process and information services and then
defines the kinds of data that are stored in
the various components that make up the
information architecture. Next is an
overview of components found in infor-
mation architecture with special focus on
the repository and integration services.
Finally, the roles and responsibilities of
those who govern the information archi-
tecture are described.

Terminology
Operationally, from an information tech-
nology (IT) perspective, an information
architecture supports processes that describe

sequences of information services that access
stored data. This relationship is illustrated in
Figure 1.

Processes are sequences of operations.
For example, at a data/information level,
processes might include Find, Fix, Target,
Engage, and Assess. At the decision-sup-
port level, processes might include
Readiness, Crisis Action Planning, Deploy-
ment, and Employment/Sustainment.
Processes invoke information services in a
specific order (i.e., in a sequence that
becomes an operational flow).

Information services provide intuitive
access to information within the informa-
tion architecture such as domain-relevant
information on such things as aircraft,
munitions, personnel, or bases. Infor-
mation services also provide information
on domain-specific capabilities such as sor-
tie generation capacity, fuel consumption,
skill training and certifications, or runway
capacities. Information services apply
domain rules, semantics, and syntax to con-
vert raw data into information.

Two information services examples fol-
low. The first illustrates the difference
between raw data and decision-support
information provided through an informa-
tion service. The second highlights the data
cleansing or scrubbing capabilities of the
information architecture.

Example 1: Munitions
In a combat situation, many users (e.g.,
from the joint commander, to the unit level
commander, to the munitions supply clerk)
need to know the capacity of an ammo
dump. However, for safety reasons muni-
tions are not active in the ammo dump but
are built when needed. If direct access to
munitions data were granted to end users,
then the lack of munitions domain knowl-
edge could lead to confusion rather than
useful, decisional knowledge. Therefore,
munitions information service could pro-
vide accurate information to authorized users

John Wunder and Dr. Will Tracz
Lockheed Martin Mission Systems

Info
Service 1

Transactional

P1Processes

Stored
Data

Information
Services

P2 Pn-1 Pn.....

Info
Service 2

Info
Service 3

Info
Service 4

Info
Service 5

Unstructured
Data

Analytical
Data

(historical,
"cleansed" data)

reports)

Data (from

(maps, figures,
Online

Transaction
Processing)

Figure 1: Relationship Between Processes, Information Services, and Stored Data

by applying the appropriate domain rules
and semantics associated with the muni-
tions data resulting, for example, in the
required information about the munitions
capacity.

Example 2: General Ledger
All program managers need access to cur-
rent expenditures. Accounting data is gen-
erated by many sources, potentially in many
different formats. A general ledger infor-
mation service assures that only complete,
accurate, and audited expenditures of
every budget line item are available to the
user by eliminating conflicting or incom-
plete data (i.e., via data cleansing or scrub-
bing technology).

Information services accesses stored
data to generate information. Generally,
there are three types of data stored in
information architecture. These types of
data, as illustrated using the previous exam-
ple in the general ledger information serv-
ice, are as follows:
• Transactional data. These are day-to-

day operations recorded as they occur.
In the general ledger example, this is
the recording of the thousands of day-
to-day expenditures required to run an
enterprise.

• Analytical data. These are historic
transactional data that may be time-
stamped and stored immediately after
an event occurs, or are recorded later.
Furthermore, the format of the data
may be different than its originally
recorded format. Analytical data are
used to determine trends and make pre-
dictions. In the general ledger example,
the previous year’s expenditures would
need to be recorded for later analysis to
determine future budget requirements.

• Unstructured information. These are
stand-alone documents that provide
direct guidance/information for a task.
These data include maps, weather
reports, pictures or, for the general
ledger example, expenditure guidance
from Congress or the Department of
Defense.

Information Architecture in
Context
Advances in IT in the areas of workflow
and design notation/specification stan-
dards (e.g., Business Process Modeling
Language and Unified Modeling Language)
have reached the point where it is possible
for mission processes to be composed,
automated, and executed by end users
without requiring IT professionals or tradi-
tional application development. In addi-
tion, IT Web services2 [1] have simplified
the creation, invocation, and aggregation

of domain-specific information services
(e.g., aircraft, munitions, inventory, or
budget).

In the Air Force, these advances allow
warfighters to sequence and aggregate
processes and information services to
resolve unique, unanticipated situations as
they occur. For example, the Regional
Support Squadron (RSS) at Air Mobility
Command may determine that they are
having an unacceptable number of tire fail-
ures; however, no application was written
to determine whether the tire failure was
due to a particular lot of tires, type of air-
craft, or runway. The information architec-
ture allows the RSS member to easily use
the Supplier, Aircraft, and Runway and Tire
Failure Information Services to isolate the
root cause of the failures and execute
appropriate corrective actions without any
new system or code development.

Finally, current IT standards and mech-
anisms for representing data patterns allow
a clear separation between information cre-
ation and usage and data storage and
retrieval. This allows implementers of core
information services to use common, cen-
trally administered and managed commer-
cial tools to store and retrieve the data.
These are the cornerstone concepts of
information architecture strategy and
enable the delivery of accurate, timely, and
trusted information to the warfighter.

Information architecture is part of an
enterprise information system’s physical
architecture. For example as shown in
Figure 2, the GCSS-AF architecture con-
sists of two frameworks comprising five
layers. While Application Framework con-
tains Air Force Information Services, the
Integration Framework consists of infor-
mation technology (commercial products)
that enables integration and supports the
capabilities in the Application Framework.
Thus, in this case, the focus of the infor-
mation architecture is primarily on the
Application Framework. Processes form
the top layer of the Application
Framework and invoke information servic-
es that reside in the second layer. The data

store services are found in the Integration
Framework (i.e., in the data warehouse or
operational databases).

Key Building Blocks
As shown in Figure 3 (see page 6), infor-
mation architecture consists of the follow-
ing components:
• A technology infrastructure that is

comprised of the following:
• Processes targeted to support the

enterprise business processes (or in
the case of the Air Force, Air Force
missions).

• Information services developed to
support business-/mission-specific
processes.

• Data store services that are part of
the enterprise infrastructure and
consist of the following:

• A repository that is a directory
for looking up and calling
processes and information serv-
ices via the Web.

• Online transaction processing
(OLTP) databases for recording
day-to-day transactions.

• An enterprise data warehouse
(EDW) for storing data that can
be used for trend analysis and
prediction.

• Extraction, translation, and load
(ETL) technology to move bulk
data from databases to the EDW.

• Enterprise application and inte-
gration (EAI) technology to pro-
vide data conversion services
(wrappers) for current applica-
tions into information services
and processes.

• A portal to present browser-
accessible, mission-focused in-
formation.

• An organizational infrastructure com-
prised of leaders (who define strate-
gy/vision and performance metrics),
stewards (who ensure information
accuracy), and operational experts (who
define process requirements and
needs).

October 2003 www.stsc.hill.af.mil 5

An Information Architecture Strategy

g y ,
Management Systems,

Platforms, Networks,

Process

Information
Service

Security, Directory, Services,
Distribution Concurrency, Events,

Persistence ...

Middleware

Infrastructure

ionApApplicatioApplication

Reusable
Business

Components

Technical
Services

Integration
Services

}}}}}
}}}}}}}}

A
pplication

Fram
ew

ork
Integration
Fram

ew
ork

Figure 2: GCSS-AF Architecture, Frameworks (2), Layers (5), and Example Technologies

Information Sharing

6 CROSSTALK The Journal of Defense Software Engineering October 2003

For the Air Force, the information strat-
egy leverages the GCSS-AF integration
framework technologies while providing
well-defined governance for the application
framework implementation.

Information Architecture
Repository
The information architecture repository
may be thought of as the phone book of the
information architecture. For example, to
make a connection to a process or an infor-
mation service requires the following:
1. Look it up in the repository.
2. Use the resulting details for contacting

the process or information service,
including the information source, quali-
ty, format, and address.

3. Place the required calls to accomplish
the mission.
Having the end user perform the above

sequence of steps in his or her operational
environment to create a new automated task
removes the user’s need to specify require-
ments for developers to implement the
application in a traditional development
environment. To grow these information
architecture capabilities, end users or IT
implementers must register new processes
and information services in the repository
providing all the characteristics required to
enable automatic activation.

The information architecture repository
is composed of two pieces: a content man-
agement system (CMS) for content

providers to manage unstructured data, and
a component repository for content
providers and implementers to manage
structured data. The information architec-
ture enforces a common information model
(common categories and data attributes) on
the CMS and the component repository.
Standards such as the Dublin Core Standard
for Metadata [2] (data about data) and the
Universal Description, Discovery, and
Integration (UDDI), when coupled with the
domain-specific data classification cate-
gories of information architecture form the
baseline data characteristics and assure com-
mon and easy access.

This dual repository defines, enables,
and enforces the information architecture.
The repository is not just a design artifact
but also the production information access
tool. Through registration in the repository,
processes and information services are
made available to authorized users within
and without the enterprise. The repository
enables information discovery, exchange,
and flow.

Integration Services
Figure 4 illustrates the flow of data through
existing information architecture integration
services (i.e., ETL and EAI) that support
the composition of mission-specific infor-
mation services.

ETL
Extract, transform, and load technologies

are used to cleanse and normalize data.
When stored in the data warehouse, these
cleansed data allow for trending, aggrega-
tion across disparate sources, and general
analysis of the data to support planned and
unplanned investigations. The metadata-
driven ability of ETL tools to enforce data
definition is of particular importance to
information architecture. Data extraction
methods supported by the information
architecture allow the timely extraction of
newly created or updated data and can sup-
port scheduled as well as event-driven data-
extraction operations. Efficient data extrac-
tion and filtering can be performed from
databases and flat files without requiring
access to application source code. This can
also be performed without significantly
affecting end-user response time.

EAI
Many large enterprises have an extensive
and effective information infrastructure in
place. Unfortunately in many cases, this
legacy information infrastructure was opti-
mized for point solutions for segregated
users (i.e., what has been referred to as
stovepipes). EAI allows an enterprise to lever-
age the value of the existing enterprise
stovepipe applications. In particular, EAI
can wrapper current systems to appear as
information architecture processes and
information services, thereby garnering the
enterprise information benefits without
rewriting the current systems.

EAI initially will publish event informa-
tion to the information architecture making
it available to any authorized subscriber. As
the information architecture matures, the
EAI capability can be used to drive mission
execution processes. For example, an event
such as the reassignment of airmen will trig-
ger such processes as user account updates,
base housing activation, command notifica-
tions, or chaplain visits.

EAI is well suited to the publish/sub-
scribe philosophy where data is cleansed and
transformed into enterprise information at
the source, in near real-time, on an event
basis. EAI tools can be coupled with trans-
action monitoring tools capable of generat-
ing alarms when data or operational prob-
lems occur. Near real time information
transfers and performance monitoring are
obvious advantages in environments where
the reliable delivery of information is
important.

Roles and Responsibilities
For any information architecture strategy to
succeed, it must not only provide explicit
guidance for the process and information
service implementers as well as the content
providers and end users, but also must pro-

Organizational
Infrastructure

EDW

EAI

OLTP

Portal

ETL

CMS

Component
Repository

Metrics

Data
Stewards

Governance
Board

External
Data

Information
Architecture
Repository

Implementer Content
Provider User

Technology
Infrastructure

Process

Process

Process
Information

Services

Information
Services

Information
Services

Figure 3: Information Architecture Strategy Components

October 2003 www.stsc.hill.af.mil 7

vide oversight in establishing common goals
and metrics, usually in the form of a gover-
nance body. In the Air Force’s information
architecture strategy, it is essential that the
governance body consists of several advo-
cates : 1) a doctrine operations advocate, 2) a
technical systems advocate, and 3) an inte-
gration advocate, with doctrine advocacy
taking precedence. The steward of the
information must be the doctrinal owner of
the operation. In order to institutionalize
this process, an enterprise must support an
information management board (IMB),
which should comprise three members:
1. The chair is the transformational leader

of the doctrinal operations and is
responsible for all decisions, assuring
that the operational architecture reflects
current doctrine and concept of opera-
tions.

2. The information technology lead of the
implementation (generally appointed by
the chief information officer) is respon-
sible for the system and technical archi-
tecture, assuring the operational archi-
tecture is implemented.

3. The integration scribe (appointed) is
responsible for implementing and
encoding the architecture in the GCSS-
AF Integration Program.
The IMB is responsible for implement-

ing the following:
1. The information architecture.
2. The definition of metrics and measures

of effectiveness (MOE) of those met-
rics such as sortie generation capacity,
mission capability, or cost per flying
hour.

3. The documenting, prioritizing, allocat-
ing, authorizing, synchronizing, schedul-
ing, and monitoring resolution of oper-
ational requirements.

4. The institution of lower-level IMBs to
control information within doctrinal cat-
egories.

Summary
Information architecture is more than just
data in a database. It is a hierarchy of prod-
ucts and services organized to assure the
timely and accurate delivery and storage of
data and information across the enterprise.
This article has described the components
of an information architecture strategy
using examples from the GCSS-AF
Enterprise Architecture, which is currently
under development as part of the GCSS-AF
program.◆

References
1. Web Services Interoperability Organ-

ization <www.ws-i.org>.
2. Weibel, S., J. Kunze, C. Lagoze, and M.

Wolf. “RFC 2413 Dublin Core Metadata

for Resource Discovery.” Sept. 1998
<www.faqs.org/rfcs/rfc2413.html>.

Notes
1. This article is based on the “GCSS-AF

Information Architecture Strategy”
White Paper, document number PROJ-
2003-GCSSAF-0449, and is the result of

the efforts of several individuals on the
GCSS-AF project.

2. A Web service is defined as a service
that is available on the World Wide Web,
is accessible via Web protocols, is self-
defining for humans and machines, and
is registered in a Web repository for easy
lookup and activation.

An Information Architecture Strategy

sInformation Services

Extract, Transform, and Load

Messaging

Enterprise Application Integration

Online Transaction Processing

Enterprise Data Warehouse

External Data

Figure 4: An Information Architecture Data Flow

About the Authors
Will Tracz, Ph.D., is a
principal research scien-
tist in the Global Com-
bat Support System-Air
Force (GCSS-AF) En-
terprise Engineering de-

partment at Lockheed Martin Mission
Systems. He is responsible for investi-
gating innovative applications and
extensions of the GCSS-AF Archi-
tecture Integration Framework. Tracz is
a member of Lockheed Martin’s
Corporate Advanced Software Tech-
nology Focus Group as well as an ad
hoc member of the 1999 Air Force
Scientific Advisory Board Commercial
Off-the-Shelf study. He is a member of
the Rochester Institute of Technology
Software Engineering Advisory Board,
editor of the Association for Com-
puting Machinery SIGSOFT Software
Engineering Notes, and the author of
more than 100 technical reports and
books.

Lockheed Martin Mission Systems
1801 State Route 17C, MD 0605
Owego, NY 13827
Phone: (607) 751-2169
Fax: (607) 751-2538
E-mail: will.tracz@lmco.com

John Wunder is a certi-
fied Lockheed Martin
architect and has been
the lead system archi-
tect/composer on the
Global Combat Support

System-Air Force since 1999. Prior to
this, he was lead architect for Dow
Chemical Process Control, and soft-
ware architect for the U.S. Army battle-
field digitization project. Wunder has
been involved in information technolo-
gy for more than 20 years.

Lockheed Martin Mission Systems
1801 State Route 17C, MD 0605
Owego, NY 13827
Phone: (607) 751-6096
Fax: (607) 751-2538
E-mail: john.wunder@lmco.com

The demands of the war against terror-
ism require timely, relevant, and accu-

rate imagery intelligence and geospatial
intelligence information. The National
Imagery and Mapping Agency’s (NIMA)
National System for Geospatial
Intelligence (NSGI) provides access to
such information via standard browsers
into diverse data holdings containing ter-
abytes of online imagery, imagery intelli-
gence, and geospatial products. The NSGI
enables the warfighters to locate the data
they need, when they need it, wherever it is
within any of the data holdings to aid in
mission success.

The challenge is to provide this high
caliber imagery intelligence and geospatial
information in real time. There are more
than 300 product types and formats of
imagery, imagery intelligence, and geospa-
tial information each with a significant rate
of change per day. Also, there are thou-
sands of image segments and intelligence
reports with terabytes of online products
to query.

To overcome these challenges, the tool
Information Access Services (IAS) pro-
vides quick access to imagery and geospa-
tial information and products stored in
many interconnected NSGI libraries
around the world. Its Web-based forms

provide one tool with which to discover a
wealth of information. IAS makes all
underlying source and information types
and library locations transparent to IAS
users; it sees a single Web-based set of
forms. The user selects the libraries he or
she wants to query, creates a query or uses
an existing query, and submits the query.
IAS displays thumbnails and overviews of
the query results, allowing the user to order
only the products of interest.

Mission
The NSGI is a worldwide network of data
collection, data holdings, and specialized
analysis tool sets, all supported by a con-
federation of systems developed by multi-
ple contractors located throughout the
United States. To distribute the right infor-
mation at the right time, the NSGI enter-
prise was devised as an integration of tech-
nology and collection capabilities to enable
geospatial intelligence analysis on whatever
source imagery, imagery intelligence, and
geospatial mission-relevant data is avail-
able, all to support the warfighter’s mission
without information overload.

The NIMA data holdings within NSGI
include imagery, imagery intelligence, and
geospatial information (maps, elevation,
charts, and features). NSGI supports

Department of Defense (DoD) initiatives
to transition from standard-scale map and
chart production to easily accessible digital
information that satisfies military imagery,
imagery intelligence, geospatial, mapping,
charting, and weapons system require-
ments. The NSGI’s goal is to provide a
common view of this disparate informa-
tion as shown in Figure 1.

All segments within the NSGI con-
tribute to NIMA’s vision of a seamless
integration of its data information result-
ing in a community of interoperable
NIMA information libraries that provide
integrated geospatial intelligence to
NIMA’s communities. The information
libraries comprise the information heart of
the NSGI enterprise. Data from multiple
sources are constantly stored and cata-
loged in the libraries based on a common
logical view of the information, which is
documented in the Discovery and
Retrieval Interface Data Model (D&R
IDM). Developed by Harris Corporation,
the D&R IDM provides the data structure
to define the relationship between the
stored items (imagery, imagery intelligence,
and geospatial products) and metadata
attributes about the stored items.

Metadata is an informational fact that
describes the geospatial, imagery, or
imagery intelligence product. Metadata can
include information about the stored items
such as currency, accuracy, data content,
source information, and coverage. The
physical implementation of the D&R IDM
data model by all libraries provides a com-
mon set of metadata attributes for the user
to query, passing metadata attributes
between client and information libraries.
The common set of metadata attributes
provides the user a common view of the
available data holdings. Queries can be
constructed using metadata attributes that
are valid across all libraries, and query
results can be sorted by resulting attributes
to facilitate analysis.

An imagery analyst (IA) uses the results
of the queries to perform image exploita-
tion, which is the extraction of informa-
tion to provide knowledge – or more

Warfighter’s Access to Geospatial Intelligence
Peter Winter

Harris Corporation

Imagery intelligence and geospatial intelligence information have become extremely critical to U.S. warfighters under the cur-
rent demands of the war against terrorism. The National Imagery and Mapping Agency’s National System for Geospatial
Intelligence (NSGI) provides access to such information through standard browsers into online data holdings. This article
explains how the NSGI provides this high-caliber imagery intelligence and geospatial information in real time to the warfight-
ers when they need it, wherever it is within any of the data holdings to aid in mission success.

8 CROSSTALK The Journal of Defense Software Engineering October 2003

Sources Information
Types

Libraries Common
User View

Geospatial
Imagery
Library

Geospatial
Products
Library

Tactical
Imagery
Libraries

Imagery
Libraries

I
A
S

I
A
S

I
A
S

I
A
S

Users
With
Browsers

Sources Information
Types

Libraries Common
User View

Geospatial
Imagery
Library

Products
Library

Tactical
Imagery
Libraries

Imagery
Libraries

I
A
S

I
A
S

I
A
S

I
A
S

Users
With
Browsers

Geospatial

Figure 1: IAS Presents the Common User View From Disparate Information Sources

October 2003 www.stsc.hill.af.mil 9

specifically intelligence – about an area on
the earth. Extracted information can be a
description of the image contents, meas-
urements of features of interest, compar-
isons of new images to previous images to
determine differences to assess damage or
movement, terrain analysis, or precise loca-
tion of objects of interest. The time need-
ed to precisely locate objects of interest
has been significantly reduced as a result of
the NSGI.

A geospatial analyst (GA) uses the
results of the queries to generate digital
maps and charts. The resulting geospatial
products are stored in the libraries for use
by others. IAS provides several other criti-
cal components of the NSGI enterprise in
support of the IA and GA.

IAS Features
The Discovery and Retrieval Client 2001
provides a common user interface of the
NSGI information libraries and is com-
posed of application programs that can be
executed from a user platform that is con-
figured to meet community standards for
communications and security compliance.
The Protocol Adapter is deployed with
Client 2001 for access to libraries that are
not compliant with the most recent speci-
fication. Profile Services provides a single
point of authentication for user access and
a single point of storage for user commu-
nities. Stored information such as query
results and public-saved queries can be
shared within the user communities.

The Client 2001 is a powerful data
access and retrieval tool that operates
much like a Web-based search engine for
imagery and intelligence data. With Client
2001, the warfighter or intelligence analyst
can quickly locate and retrieve the infor-
mation needed to perform his or her mis-
sion, even across distributed and dissimilar
data holdings. The NSGI data holdings
seek to provide the warfighter and intelli-
gence analyst with the most current capa-
bility to store and catalog petabytes of mis-
sion data – more data than ever before
available. The IAS enables the warfighter
and intelligence analyst to locate the data
they need at the right time wherever it is
within any of these data holdings.

Both the Client 2001 and the informa-
tion libraries make it easy for users to
query the NIMA holdings for existing
available geospatial, imagery, and imagery
intelligence products. Queries are based on
geographic areas of interest, product iden-
tifiers, and generalized parametric descrip-
tors (for example, scale, resolution, accura-
cy, or currency). Users can focus in on
areas of interest and only retrieve informa-
tion that is truly relevant to their search

request. The IAS also enables users to
browse online metadata, including browse
views, thumbnails, and overviews of
selected products; to graphically and textu-
ally view metadata; and to place orders.
Users with sufficient hardware, communi-
cations bandwidth, and priority can receive
orders online. Orders for physical media
(maps, tapes, CD-ROMs, etc.) are delivered
offline.

Those who repeatedly use the same
query and result attributes and query the
same library(s) can use Query Express.
The Query Express page is pre-configured
to show all the needed query fields with no
user set-up required. It can be used as a
template to be filled in with operationally
significant values, or the values could have
already been saved so that the user just
reviews the query form and selects the
submit button to initiate the query in a sin-
gle button selection.

The Favorite Query option enables the
user to open a query that was previously
saved as a Favorite Query. This feature
provides a quick method to open a fre-
quently used query without having to
access multiple pages. Favorite queries
include Public Favorites (saved in a public
workgroup folder) and Personal Favorites
(saved to your personal Favorite Queries
folder). Client 2001 provides an automatic
query and order feature for advanced users
that allows them to build queries that are
set to automatically execute at specific
times or intervals during the day and auto-
matically forward ordered results. The
results discovered are available to the user
when the user logs on.

Information flows from the NIMA
production systems to the information
libraries for user access. IAS users also
have the capability to store information in
the libraries. The user-populated informa-
tion is then made available to other users as
value-added data for NIMA production
purposes.

IAS users have unique user identifica-
tions, passwords, and account information
that are specific to their use of the NIMA
data and are consistent with network
provider standards. The identification
information, stored in Profile Services, is
used to control access to library informa-
tion and to provide for individual prefer-
ences and defaults. Preferences allows the
user to tailor the default options that are
used on many of the Client 2001 pages.
After granting user access, the information
libraries also control access at the data level
within the library.

The Client 2001 online help capability
provides NIMA users with accessible
training information. It provides tutorials

on how to perform specific IAS tasks and
the Online Learning Capability (OLLC).
The tutorials are organized by pages and
topics, and can be used to search for spe-
cific topics and words. The OLLC pro-
vides sectional links within Client 2001
pages. The sectional links (Show Me) display
relevant cue cards for critical functions,
providing the user with step-by-step
instructions and examples to assist him or
her during task performance.

The Protocol Adapter is deployed with
Client 2001 for access to libraries that are
not compliant with the most recent speci-
fication. The Protocol Adapter performs
an interfacing function to make non-NSGI
systems available to the NSGI enterprise.
Such systems may include legacy systems,
prototype systems, or systems that have
not maintained compliance with the NSGI
interfaces. The Protocol Adapter is a soft-
ware service that acts as a translator allow-
ing Client 2001 to communicate with non-
NSGI systems. To a library, the Protocol
Adapter appears as a client, using that
library’s native client Application Program
Interface. To Client 2001, the Protocol
Adapter appears as a library using the
NSGI standard.

Architecture
IAS consists of thin client-server architec-
ture operating with the client’s worksta-
tion-standard Web browsers. IAS supports
the DoD, federal, and internal NIMA pro-
duction users. Access is via defense and
intelligence networks. The architecture is
scalable to support a growing user com-
munity, flexible to incorporate new user
services, and extensible to exploit emerg-
ing technologies. The architecture also
includes mechanisms to ensure that access
to classified and sensitive data is controlled
and granted only to authorized users.

Figure 2 (see page 10) depicts the IAS
architecture and also the physical location
of the architectural component within the
NSGI enterprise. In the IAS implementa-
tion, the presentation layer follows the
lightweight client model of the World
Wide Web. This model eliminates the need
for specialization on the user’s workstation.
The only element required on a user’s
workstation is a Web browser that com-
plies with Hyper Text Markup Language.
The interface between the application layer
– Client 2001 – and the presentation layer
is the Web server, which is accomplished
via a commercial off-the-shelf (COTS)
product called Iplanet. The application
layer, or Client 2001, implements the busi-
ness logic needed to present information
to the user and to interpret the user’s
actions. The application layer constructs

Warfighter’s Access to Geospatial Intelligence

the query as defined by the NSGI interface
standard and distributes the query to the
libraries, which represent the information
layer of the NSGI architecture. The com-
plexity of the IAS application layer is its
interoperation with multiple instances of
information layers, or libraries, providing
an integrated view of information across a
distributed enterprise to the user.

The NSGI interface standard docu-
ments the interfaces, data types, and error
conditions that are expected to occur
across the NSGI architecture. This special-
ized Interface Definition Language (IDL)
allows clients access to data that have an
association with a point or area on the
earth. A NSGI-compliant library has inter-
faces that allow a client to search and dis-
cover information contained within the
library, get details about a particular item
stored in the library, and arrange for the
delivery of the product.

For an enterprise as distributed as
NSGI, it is necessary to define how sys-
tems can interoperate without being con-
strained by an operating system or lan-
guage. The NSGI mandates the use of
Common Object Request Broker Archi-
tecture (CORBA) middleware to provide
this interoperability as part of the interface
standard. CORBA is based on industry
standards developed by the Object
Management Group (OMG) to enable
sharing of objects across layers. CORBA

requires that IDL be used to specify
CORBA-transported objects and inter-
faces and make these objects and services
accessible to other CORBA objects. This
allows the object’s services and informa-
tion to be exposed to each other and to
other systems’ objects across the DoD
Wide Area Networks. As required by the
OMG, IDL specifications are generic
enough to be compiled in several different
languages, including C++ and Java.

The Protocol Adapter architectural
component provides access to libraries not
compliant with the most recent specifica-
tion. As depicted in Figure 2, the
Geospatial Products Library requires a
Protocol Adapter because it is a library that
is operating with an old, no-longer-sup-
ported version of the NSGI Standard. The
Profile Services architectural component
provides services to Client 2001 as a single
point of authentication for user access and
a single point of storage for information
about the user, user-saved queries, and
query results.

IAS Deployed Configuration
The IAS is deployed worldwide, providing
information access to thousands of users.
The IAS-deployed environment generally
consists of a 2-CPU Sun Enterprise E4500
server with T3 disk array. The COTS items
hosted on the server include Java, C++,
Netscape, Solaris, IONA, RogueWave,

Perl, Oracle, and iPlanet. The IAS software
may also be deployed on a server as small
as a laptop and up to an E6500 with 16
CPUs, depending on the deployment site
workload and user base.

Most deployment sites consist of fixed
location computing centers but may also
include mobile environments such as
ships, aircraft, and the High Mobility
Multipurpose Wheeled Vehicle. Generally
there is an instance of the IAS deployed
with each library. These platforms exist in
a secure distributed enterprise environ-
ment with users logging in from all parts of
the world to obtain imagery data from the
various NIMA imagery libraries. User login
is through Hyper Text Transfer Protocol
from a browser on their local workstation
to the IAS server being accessed.

Information Collaboration
Critical to Successful
Development
Information sharing and collaboration is
also an important part of the development
process. The IAS project has been execut-
ed with a close partnership of the cus-
tomer and involvement of the user com-
munities throughout the phases of release
development. Requirements are developed
in conjunction with the customer as one
cohesive team and are reviewed by user
representatives. In the development of
requirements and design, IAS conducts
daily on-site interface with the user com-
munities providing feedback to the devel-
opers to ensure requirements and design
reflect users’ needs and concept of opera-
tions.

Requirements are captured and main-
tained in a database and linked with the
following requirements analysis products:
requirement interpretation, assumptions,
issues, use cases, and test allocations. The
project database is central to ensuring
everyone involved in the development of
IAS has a traceable linkage from require-
ments through design products to verifica-
tion test procedures. IAS uses document-
ed processes to build in quality and main-
tainability and to ensure completeness
throughout product development and
maintenance.

Adherence to the process ensures that
quality is built-in not added-on. Project
processes are documented in Process
Directives (PD). These directives are
based on Harris Government
Communications Systems Division
(GCSD) standards for executing projects
called the division command media. The
command media is tailored and elaborated
for project execution. The PDs define in
detail the project process throughout the

Information Sharing

10 CROSSTALK The Journal of Defense Software Engineering October 2003

User
Workstation

Site IAS
Server

Local / Remote Site Library Server(s)

Client 2001

ImageryGeospatial
Products Tactical

Site IAS
Server

Local / Remote Site Library

Geospatial
Imagery

Profile
Services

Protocol Adapter

NSGI Interface Standard

Web Server

Client Web Browsers

Figure 2: The Information Access Services (IAS) Architecture

product life cycle, from requirements to
product maintenance. Process is planned
into a project master schedule containing
detailed milestones, which provide the
project management team and customer
with detailed insight into the project exe-
cution.

Each function within the project acts
as either a customer or a supplier.
Customer-supplier checkpoints ensure the
process is followed. The checkpoints and
major process steps are detailed in the
project milestone schedule and reported
internally weekly and to the customer
monthly. The process itself is open to
quality improvement. PDs are sponsored
and maintained by project functional
groups. Improvements to process direc-
tives can be recommended by anyone on
the team to the System Configuration
Control Board.

The IAS project uses an Engineering
Quantitative Management Plan to define
the project metrics and control limits that
are collected and reviewed monthly by the
Project Management Team. The metrics
are collected using the Harris GCSD stan-
dard metric tool (Web client/database
server) [1]. The monthly review of the
project metrics provides a quantitative
view of the project product and process-
es, early visibility into possible trends, and
actively identifies areas for improvement.

The IAS project collects and uses the
trends of a variety of quality measure-
ments to improve project execution and
maintain or improve quality. Progress is
tracked in the following areas: cost and
schedule, risk assessment, resources
(development environment and staffing),
problems and/or defects with a product
or process, system performance, stability
of the degree of change, and complete-
ness. The IAS Cost Performance Index
and Schedule Performance Index remain
at 1.0 or greater, demonstrating the adher-
ence to process and good planning.

The metrics that the project monitors
for adherence to plan or prediction
include the following: defect work-off
rate, defect discovery, defect closure sta-
tus, defect severity, cost, schedule, engi-
neering staffing, and risk assessment
impact in dollars. These monthly metrics
provide measure and insight into knowing
how well the plan is being executed,
detecting trends, and allowing decisions to
be made on efforts that could be acceler-
ated or need refocused resources to
accomplish the project’s goal.

Conclusion
The NGSI has met the challenge of inte-
grating disparate information sources and

providing a common user view into the
data holdings of imagery, imagery intelli-
gence, and geospatial information. The
IAS discovers the data of interest, allows
the user to browse views of selected dis-
covered products, graphically and textual-
ly views data about the products, and
delivers orders of selected products either
online or offline. The IAS enables
warfighters to locate the data they need
wherever it is within any of the data hold-
ings at the right time. Through user feed-
back and process improvement, the NGSI
will continue to implement user-driven
enhancements to meet the evolving needs
of the warfighter.◆

Reference
1. Natwick, Gary. “Integrated Metrics for

CMMI and SW-CMM.” CrossTalk

16: 5 (May 2003).

October 2003 www.stsc.hill.af.mil 11

Warfighter’s Access to Geospatial Intelligence

About the Author

Peter Winter is the
chief system engineer
for the Information
Access Services project.
He has 25 years experi-
ence in aerospace, infor-

mation processing systems, and launch
control. His experience includes require-
ments development, designing, integrat-
ing, and testing large-scale software and
hardware systems. He has Bachelor of
Science and Master of Science degrees
from Florida Institute of Technology.

Harris Corporation
P.O. Box 37
Melbourne, FL 32902-0037
Phone: (321) 309-2442
E-mail: pwinter@harris.com

20
03

 U
.S

. G
O

V
E

R
N

M
E

N
T

'S
 TOP 5 QUALITY SOFTWARE PROJECTS

CROSSROSSTALKALK
The Journal of Defense Software EngineeringThe Journal of Defense Software Engineering

FOR MO RMATION OR TOR ENTER,

ITI OUR WEB SITE

Top 5 Quality Software Projects003 U.S. Government's T20
T epartment of Defense andhe De ossTalkCro are currently accepting nominations

d by the Office of the Under Secretary ofgious awards are sponsoredprestig
y, and Logistics, and are aimed at honoringse for Acquisition, TechnologyDefens
e capabilities and recognizing excellence inst of our government softwarethe bes

re development.softwar

ons is December 5, 2003. You can revieweadline for the 2003 nominatiThe de
s, scoring criteria, and nomination criteria bymination and selection procesthe nom
he nomination form, submit your project forg our Web site. Then, using tvisiting
rd.eration for this prominent awaconside

The operation of today’s software-
intensive, mission-critical systems can

determine a company’s success or failure.
Factor in a safety-critical element and
these systems can make the difference
between life and death. One does not have
to look far in our society to see these sys-
tems. Communications, finance, air trans-
portation, defense, and medicine are fields
that often rely heavily on software-inten-
sive systems, and the consequences of the
failure of a key system can be significant.

In many cases, these software-inten-
sive systems are far too complex for a sin-
gle person or small group of people to
create. Collaboration, sometimes on a
large, international scale, may be required
to create such systems. The greater the
number of people involved in an effort,
the greater the need to augment them with
technology. The technology exists to cap-
ture raw data in many forms (written,
audio, video, sensory, digital), to index this
data to make it easier to retrieve later, to
digest volumes of data into succinct and
useful information, and to control the dis-
tribution of this data and the information
derived from it. We need to apply our
technology wisely to augment people and
make their collaborations more effective.

Collaboration Complexities
Collaboration can take many forms, par-
ticularly when you extend the concept to
include smart devices as well as people.
Let us first tackle the obvious – people.

People working together to achieve a
common objective is how we normally
think about collaboration. To make such a
collaboration work, people require the fol-
lowing:
• A defined objective. This objective

may or may not be clearly defined at
first, but as the collaboration gets
underway it becomes better defined.

• Willingness to collaborate. The collab-
oration will be less effective if the peo-

ple are not able (possibly due to legal
or political constraints), willing, or
motivated to collaborate.

• Ability to communicate. At the funda-
mental level, we communicate through
our senses, so the more senses that are

involved in the communications
process, the better. Textual communi-
cation in a common language using a
common set of terms (which may or
may not be well defined) is a starting
point. Images (photos, diagrams) can
be added to enhance the effectiveness
of the communication. Video (video
clips, interactive dialog via cameras and
sound) enhances it further. Full per-
sonal contact, where body language
comes into play, brings all the senses
(even smell) into play.
Collaboration can take place without

anything else; but often it is not effective
without adding a few enhancements such
as the following:

• The objective must be clearly defined;
success in achieving the objective must
be measurable. For the collaboration
to be effective, the team must be able
to analytically determine when the
objective has been achieved.

• Communication must be based on a
language with as few dialects as possi-
ble using terms with as little ambiguity
as possible. Communication must also
be captured and made available for
future reference in an organized form
that is as easy as possible to search.
Common threads must also hierarchi-
cally organize captured communica-
tion so the chain of reasoning can be
followed.
Collaboration between smart devices

involves a similar set of requirements.
One good way to think of these devices
(and people, for that matter) is to apply a
Task-Object-Event model. In such mod-
els, the objective is couched in terms of a
task to be performed, and this task may be
divided into subordinate tasks, and so on.
An object (such as a smart device, person,
or team) is assigned to perform one or
more tasks. Events (such as the click of a
mouse or a manager’s order) trigger the
objects to perform the tasks. For smart
devices to collaborate, the devices require
the following:
• A defined objective. The task(s) to be

performed is the objective of a smart
device. The task(s) may be expressed
as a series of testable, measurable
requirements, often with binary quality
gates being the basis of deciding suc-
cess or failure in the performance of
the task(s).

• Willingness to collaborate. The inter-
faces of one object to another must be
compatible, based on common stan-
dards, and precisely defined to the
point where they can be compiled.
Smart devices are motivated to collab-
orate – they are designed to reach out

Effective Collaboration:
People Augmented by Technology

We are entering a new decade in the world of computer technology, and objectives like the creation of trustworthy software,
improvement in capability maturity, and the ability to “do more with less” by applying technology wisely are moving from
dreams to reality. We now have the technology in most cases, and the issue we face is how to mold it to fit our needs and apply
it. Collaboration is at the heart of most of our endeavors, and this article presents a number of ideas on how to collaborate
more effectively by wisely augmenting people with technology. It briefly discusses the importance of collaboration for the success
of a project, discusses the concept of collaboration, presents a case study in how collaboration in teaching has been augment-
ed by technology, and provides pointers to the technologies which the reader may find useful in increasing the effectiveness of
his/her collaborations.

Richard L. Conn
Microsoft Corporation

12 CROSSTALK The Journal of Defense Software Engineering October 2003

“The greater the
number of people

involved in an effort, the
greater the need to
augment them with

technology ...We need to
apply our technology
wisely to augment

people and make their
collaborations more

effective.”

October 2003 www.stsc.hill.af.mil 13

and interact with other smart devices.
• Ability to communicate. The smart

devices must be connected to each
other and employ common communi-
cation protocols and data transfer
standards to communicate. Smart-
device communication based on inter-
national standards such as
Transmission Control Protocol/
Internet Protocol and eXtensible
Markup Language (XML) can be
extremely effective and rich, allowing a
wide variety of data (textual, video, or
binary) to be transmitted. Some form
of network connectivity based on
international standards (such as
Universal Serial Bus, 802.11x, and
Ethernet) is built into most smart
devices.
Hundreds of different kinds of smart

devices exist today based on common
technologies like the .NET Framework,
the .NET Compact Framework, and the
Java Virtual Machine (JVM). These smart
devices include personal computers (PCs)
such as desktops, laptops, tablet PCs, per-
sonal digital assistants (PDAs), automobile
PCs, and more; portable digital music
players (often with voice recording capa-
bilities); portable digital video players; cell
phones; convergent devices (like
PDA/cell phone combinations such as the
Smart Phone); and a variety of cus-
tomized devices now being embedded
into other devices such as microwave
ovens, televisions, and the walls of a
house.

One of the key features of .NET and
the JVM is that extensive collaboration
facilities based on industry standards (such
as XML and Web services) are built-in.
This provides an infrastructure by which
the smart devices may collaborate, and
augments the collaboration capabilities of
the people using them as well. Let us look
at a few examples now on the drawing
boards.

Imagine first-grade students in a class-
room utilizing smart devices such as tablet
PCs. The teacher is instructing the stu-
dents in printing letters of the alphabet.
They are writing on their tablet PCs while
the teacher monitors their work from a
console at the front of the classroom. As
Johnny mistakenly forms a “b” backwards,
the teacher sees it immediately and cor-
rects Johnny’s efforts on the spot. The
teacher also sees about half of the stu-
dents making the same mistake, so he or
she opens up a dialog with the entire class
about it.

Imagine also a smart home. Johnny
returns home from school gaining
entrance through the front door by a reti-

nal scan. Signals are sent to unlock the
door, turn on the entry lights, post mes-
sages to Johnny on a display screen inside
the home (with emphasis placed on the
priority messages), and begin playing
Johnny’s favorite music. The home con-
tains a collaboration of smart devices.

On a grander scale, consider the F-35
fighter aircraft program run by Lockheed
Martin Aeronautics that incorporates
smart technology. Sponsored by partners
and supported by subcontractors in sever-
al countries, a Web-based information
portal server is used to divide this large
community into its interest areas and
allow information to be exchanged,
shared, and organized on a global basis.
Information that should be visible to all
participants is readily shared, and informa-
tion particular to specific groups in this
project can be shared without the other
groups seeing it.

Technology-Based
Collaboration in a Teaching
Environment
Microsoft not only develops a variety of
technologies and programs to support
collaboration for its customers, but also
uses its own products internally. These
collaboration tools are often used exten-
sively internally and by its partners before
the public at large sees them.

I recently attended a class at our main
campus in Redmond, Wash., and it pro-
vides a good example of how collabora-
tion between people (in this case, stu-
dents and teachers) augmented by tech-
nology (such as smart devices) can work.
The class was diverse, consisting of more
than 100 students from 24 countries.
English served as the common language,
although the speakers had to be remind-
ed from time to time to speak more slow-
ly. The following sections describe this

environment.

Hardware and Class Environment
The classroom was in Building 43, a con-
trolled-access building. Students were
given smart card badges containing a com-
puter chip that could be scanned by the
door entry mechanism to allow access.
Students were cleared for access to some
parts of the building and not others; their
movements were tracked. The badges also
plugged into the students’ laptops and
tablet PCs to log them into their comput-
ers.

The cafeteria, with its waterfalls and
garden, is located adjacent to Building 43,
and also required smart card access during
normal hours (cafeteria employees may
use their smart cards to get in after hours).
Building 43 has both Ethernet (at
100Mbps) and wireless access points (at
10Mbps). The classroom was filled with
tables that provided power and Ethernet
access points at every seat. Should a partial
network failure occur (such as an Ethernet
router failure), the alternate network was
immediately available.

More than half of the students used
laptops, while the other half used tablet
PCs. Almost all the students had PDAs or
Smart Phones (integrated PDA and tele-
phone) as well. I found it interesting to
note that the tablet PCs, with their hand-
writing and sketching input capability,
made it easier and were less distracting for
taking notes during class than the laptops.
Finally, the instructor podium was like
something out of Star Trek – videotapes,
DVDs, and CDs (audio and digital) were
fed to the computer in the podium and
displayed to the students on a large screen
and sound system at the front of the
room.

The staff for the course included a
main instructor (who stayed with the stu-
dents as a common point of contact
throughout the entire course), several
guest instructors, an administrative assis-
tant, and an on-call hardware/software
support group. Course material was pre-
pared using a variety of desktop publish-
ing tools, database servers, Web-based
information portals, and operating sys-
tems as well as the video production stu-
dios on the campus. Many of our partners
also played a role, preparing sections of
the course using their own resources.

The Software
From the start of class, the main instruc-
tor was at the podium showing the stu-
dents the Sharepoint Portal Server site and
how to access the portal. Through the
portal, the students could sign up for the

Effective Collaboration: People Augmented by Technology

“Information that should
be visible to all

participants is readily
shared, and information

particular to specific
groups in this project can

be shared without the
other groups seeing it.”

14 CROSSTALK The Journal of Defense Software Engineering October 2003

course e-mail distribution list, download
slides and videos of the presentations and
related material, download course pro-
grams and data files for their devices (lap-
tops, tablet PCs, and PDAs/Smart
Phones), perform evaluations of the
course elements as they occurred, follow
Web links to material related to the
course, and upload material (such as
homework) for the course. The main
instructor also provided his e-mail address
and the e-mail address of the administra-
tive assistant.

As the course progressed, the portal
was updated with information from the
class; for example, after the introduction
of the students, statistics on the demo-
graphics of the student body were posted
on the portal. Prior to the class, the stu-
dents’ laptops and tablet PCs had been
configured for secure access to the com-
pany’s intranet (wired and wireless), and
software had been installed to allow the
students to play the videos and view the
other class material.

Communication Vehicles
The course was highly interactive,
employing a wide variety of technologies
to communicate with the students and
help them learn. The students were
already motivated to learn the material,
and the technology greatly aided the
learning process, making it both efficient
and fun.

Presentations were vivid and highly
animated, extensively employing color and
animations effectively in both the slides to
enforce the messages and in full-motion
video to supplement the slides where rea-
sonable. In some cases, the material was
too large for a class of over 100 students
to download efficiently, thus CDs and
DVDs were distributed instead.

Video-oriented simulations were
included on CD for some class exercises.
Students ran the simulations, viewing
videos and interacting with them, causing
the sequence of videos and questions
posed to the students to dynamically alter
the simulation in response to the correct
and incorrect answers they submitted.

Technology Control
One key feature of teaching in this envi-
ronment is that the instructor had to
maintain firm control of the students’ use
of their devices (laptops, tablet PCs, and
PDAs/Smart Phones) during the class.
There was a distinct tendency for students
to want to use them during lectures when
their attention should be focused on the
front of the room; this proved to be a dis-
traction to the instructor and the other

students unless it was controlled.
Surprisingly, pen and paper were still

used – particularly for those students
without tablet PCs. The PDAs (using
handwriting and voice dictation), the
tablet PCs (using handwriting and hand-
writing recognition, speech recognition,
and voice dictation), and pen/paper were
the methods of capturing notes during
the lectures. I imagine that future classes
will be entirely based on pocket and tablet
PCs; with digital ink, pen and paper can
finally become a thing of the past.

After the Course
From the first day, the instructor
announced that the course portal and e-
mail distribution list would be available to
the students for up to a year after class
completion. Special announcements of
updates to the material would be sent to
the students through the e-mail distribu-
tion list and a course newsletter. Updates

to the material would be posted, and the
students could use the portal to stay in
touch.

Hybrid audio/digital CDs were dis-
tributed to the students so they could go
over the material while driving their cars
or working with their PCs (the digital part
of the hybrid CDs included transcripts of
the audio part). Updates to these CDs
would be mailed to the students periodi-
cally.

Most students downloaded material
from the company intranet to take back
with them. In my case, I downloaded
about 1.8G bytes of material knowing
that I would have high-speed Internet
access to these resources after I returned
home. Other students had Internet access
as well, but, due to their location, it was
less reliable or not operating at a high
speed. A student from South Africa, for
example, brought in a USB 2 disk drive
with 250G bytes of storage and down-

loaded over 130G bytes of material to
take home.

With such a diverse group, the dual
nature of the digital divide was evident –
all students were on the positive side, hav-
ing access to the Internet, but some stu-
dents had slow-speed (56K baud or less)
while others had high-speed (200K baud
or more) access. With large volumes of
material, the speed of access can make a
difference.

Information was also provided in a
format suitable for use on smart devices
(particularly PDAs and Smart Phones),
and the students installed this information
during the class. The smart devices were
also filled with task lists of ideas for the
students to pursue when they returned
home. Finally, the students were encour-
aged to take the follow-on class after
returning to their jobs.

Foundation Tools and
Technologies
While the previous scenario took place in
a classroom setting, the same technology
can be applied in a virtual setting in which
the participants are geographically scat-
tered. Obviously, it would make collabora-
tions much more effective in virtual enter-
prises where people are geographically
distributed. In addition, while many large
companies have extensive resources to
call upon (such as video production stu-
dios), many tools are available that allow
both small companies and individuals to
set up their own collaboration mecha-
nisms inexpensively.

Conferencing tools can be used to
broadcast live video among several groups
or individuals through the Internet. These
tools also support an electronic white
board that allows participants to draw dia-
grams using multiple colors (perhaps a
different color for each participant) on a
common board that all can see. Voice
communication, of course, is included. To
set this up, a server is required and com-
mon conferencing tools (or conferencing
tools based on common protocols and
standards) must be installed on each
client.

Several video capture and editing tools
are available to create video productions
using just a PC with a Web camera or dig-
ital movie camera. Extensive editing and
publication capabilities (including publica-
tion onto a DVD) are included. To set this
up, a PC with an optional video capture
card and the video capture/editing/pro-
duction software is required.

Courseware authoring tools are avail-
able to create rich interactive presenta-

Information Sharing

“... collaboration is often
required to develop

many of our
software-intensive

systems for
mission-critical, and

sometimes safety-critical,
applications.”

October 2003 www.stsc.hill.af.mil 15

Effective Collaboration: People Augmented by Technology

tions that the instructor can run in class to
augment his or her presentation, and the
student can run at home. These tools also
allow the instructor to set up Web sites
that allow the students to acquire home-
work and submit answers to homework,
take exams, and interact with other stu-
dents.

Desktop publishing tools provide the
resources for creating the slides, docu-
ments, databases, and spreadsheets that
may be needed. Free viewers are often
available for download, so the clients do
not have to have the full suite of desktop
publishing tools installed on them. Tools
for collaboration, providing e-mail, a cal-
endar, task list, and contact list support,
both locally and through the Web, are also
needed.

Behind these tools are fundamental
technologies that form a very effective
infrastructure for collaboration:
• The .NET Framework (for larger

smart devices like laptops and tablet
PCs), the .NET Compact Framework
(for smaller smart devices like PDAs
and Smart Phones), and the JVM pro-
vide common virtual machines with a
wide array of reusable components for
application programs to exploit. These
commercial frameworks from
Microsoft and Sun are used by most
developers to provide common virtual
platforms that transcend the physical
computers (Windows PCs, UNIX
workstations, mobile devices) as well as
the Internet (allowing the frameworks
to extend to Web servers).

• XML provides a common way to store
and transport data, retaining the rich
context of the data in the process.

• Web services provide a common way
to share resources and capabilities
without concern about the location of
those resources or capabilities (they
may be on the same computer or on
different computers without any
impact to the application code). With
Web services, a single cell on a spread-
sheet can be tied to other cells on
spreadsheets around the world, allow-
ing a change at one location to be
automatically viewed at other locations.
With these fundamental technologies

in play, the door to more effective collabo-
ration in both the enterprise and the class-
room is wide open! But our current foun-
dation tools can still be improved.
Organizations such as Microsoft Research
and Lucent Technologies (formerly Bell
Labs) are investigating potential technolo-
gies in a wide variety of broad areas,
including but not limited to the following:
• Management of digital photographs

and full-motion videos, including the
ready extraction of useful information
from them.

• Online communities.
• Next-generation smart devices.
• Mobile computing.
• Speech recognition and meaning inter-

pretation.
• Signal processing.
• Databases and information mining.
• Ubiquitous computing (making the

usage of computers transparent to
humans).

• Intelligent reasoning and decision mak-
ing.

Conclusion
Collaboration among people augmented
by today’s technology is taking off like
wildfire across the world, bringing the
global community closer together in many
ways. More and more effort is being
poured into making this technology adapt-
able to different needs, 99.999 percent reli-
able and beyond, and secure to the point
where the users can trust the technology to
support and protect their privacy.
Collaboration among large numbers of
people, sometimes in different countries, is
becoming more common, and collabora-
tion is often required to develop many of
our software-intensive systems for mis-
sion-critical, and sometimes safety-critical,
applications.

Collaboration is taking place between
both people and smart devices, often aug-
menting the people with smart devices and
other more advanced technologies. A real-
world example of collaboration in a teach-
ing environment was presented in this arti-
cle, and in this example, smart devices and
technology significantly augmented peo-
ple. This is happening today!

Many foundation tools and technolo-
gies are available today to support aug-
mented collaboration. But we clearly do
not have all the answers, and an increasing
amount of research is being done to
enhance our ability to collaborate by aug-
menting people.

Large volumes of material related to
the topic of collaboration and technolo-
gies in support of collaboration are freely
available to the public on several Microsoft
Web sites:
• <www.microsoft.com> is the main

entry point for all information from
Microsoft Corporation.

• <http://msdn.microsoft.com> is the
Microsoft Developer’s Network with
detail upon detail about the technolo-
gies, including the .NET Framework,
the .NET Compact Framework, XML,
Web services, and the new open shared

source code.
• <http://research.microsoft.com> is

Microsoft Research, with details and
contacts for more information on
Microsoft’s research thrusts such as
online communities, mobile comput-
ing, and much more.

• <www.msdnaa.net> is the Microsoft
Academic Alliance, a vast resource of
material and information for all educa-
tors from the Microsoft Corporation.

• <www.mainfunction.com> is a
resource sponsored by Microsoft for
educators in high schools.
Supplementary material related to this

article can be found on my university Web
sites at <http://unicoi.kennesaw.edu/
~rconn> and <http://cs.spsu.edu/
rconn>.◆

About the Author

Richard L. Conn has
more than 20 years of
experience in software
engineering, project
management, and edu-
cation. Conn is currently

a university liaison for Microsoft, serv-
ing as an ambassador between
Microsoft and many universities and
participating on industry advisory
boards for several universities. He also
teaches as an adjunct professor for the
Computer Science and Information
Systems Department at Kennesaw State
University and the Computer and
Software Engineering Department at
Southern Polytechnic State University.
Conn has taught graduate school at the
Air Force Institute of Technology in
electrical and computer engineering,
and at Monmouth University in soft-
ware engineering. He has designed
Capability Maturity Model Level 4 soft-
ware engineering processes for
Lockheed Martin Aeronautics, served as
a government consultant working for
The MITRE Corporation, served on
the Federal Advisory Board for Ada,
and contributed to the Department of
Defense Software Reuse Initiative as a
distinguished reviewer.

Microsoft Corporation
Education Solutions Group
One Microsoft Way
Redmond,WA 98052-6399
Phone: (678) 521-3440
E-mail: rconn@microsoft.com

Supply chain managers (SCMs) work to
continuously reduce the cost of sus-

taining their weapon systems through
product and process improvements. The
main cost-drivers must be prioritized to
tackle the highest cost problems first, as
not all problems can be solved simultane-
ously. To do that, the SCM must baseline
the current repair activities using actual
maintenance data collected at the point of
maintenance by the repair technicians. The
common repair technician complaint is
that current U.S. Air Force legacy systems
are too difficult to use for both inputting
and retrieving data, and therefore, techni-
cians do not regularly use them.

An F-16 SCM realized that he needed
dependable and complete repair data to
make and implement sound sustainable
decisions. Manual data collection using
spreadsheets started in a couple of avion-

ics repair shops to quantify known prob-
lems. This effort grew to a Microsoft
Access database that was updated every
four months. The repair technicians and
shop management found the Microsoft
Access database useful and wanted a real-
time system that provided instant feed-
back.

A Web-based database was initiated
using rapid prototyping, focusing on the
technician inputting the repair data at the
depot and in the field. Tracking the items
being repaired by serial number, the
warfighter in the field has visibility into the
depot repair activities on those items and
vice versa.

The remainder of this article will detail
the challenges and how the Defense
Repair Information Logistics System
(DRILS) team meets or is planning to
meet these challenges.

Supply Chain Management
Challenges
The Air Force SCMs are currently in
need of a single dependable source of
depot repair data. This became evident
when the F-16 SCM at Ogden Air
Logistics Center initiated the F-16
Flexible Sustainment program, otherwise
known as Falcon Flex. This system is
designed to analyze and attack high
repair-cost drivers and determine the
root causes of failures. These analyses are
then used to drive performance-based
acquisitions for hardware, software, and
test equipment.

The SCM sought out part repair his-
tory like that shown in Figure 1 in order
to feed the Falcon Flex analyses. Figure 1
is an example of DRILS parts consump-
tion in a part number family sorted on
the most replaced part. Various legacy
data systems were queried to extract
enough detailed repair data to perform an
accurate analysis. The results of this very
labor-intensive process were less than
desirable, and the authenticity of the
depot data that was available was suspect.
Individuals in SCM organizations typical-
ly work around this issue by developing
personal knowledge bases that are stored
only in the brains and spreadsheets of
program managers, item managers, mate-
rial managers, engineers, etc.

Further research led the SCM to the
shop floor to research technicians’ per-
sonal log books and any other source of
repair data at the depot repair facilities.
Manually documented maintenance
actions were also found on the work con-
trol documents used by the technicians,
but were only saved for one year. Data
were entered into the legacy system if the
technician was willing and the system was
available. However, data were difficult to
enter and to retrieve using the user inter-
faces.

For example, it is well known that
each technician will document the same
maintenance action in different ways

Serialized Maintenance Data Collection Using DRILS

The Defense Repair Information Logistics System (DRILS) is a specialized Web-based application that collects, stores, and
retrieves Air Force depot and field maintenance data. A Web browser is all that is needed to operate DRILS from any
<.gov> or <.mil> Internet address to “carpe data” or, seize the data. One of the main goals of DRILS is to benefit
those who enter the data. DRILS accomplishes this by providing streamlined and automated data entry that reduces main-
tenance documentation time while improving the data integrity. DRILS also provides historical analysis and other decision
support tools that can be immediately used by the supervisor or technician.

Kevin Berk
Total Quality Systems, Inc.

Capt. Greg Lindsey
Ogden Air Logistics Center

Click on SRU and Drill Down to Components

Figure 1: Repair Parts Consumption

16 CROSSTALK The Journal of Defense Software Engineering October 2003

October 2003 www.stsc.hill.af.mil 17

(e.g., R/R A2, R2 A2, Replaced A2, etc.).
The SCM hired contractor labor to inde-
pendently harvest these data and store
them first in spreadsheets, then in a
Microsoft Access database. These data
were then scrubbed to group all similar
maintenance actions together using a
consistent notation and published quar-
terly to the SCM. This database was the
precursor to the Web-based DRILS
application.

Currently, DRILS data are being used
by the F-16 SCM’s Falcon Flex program
to find high cost-drivers such as the
Expanded Programmable Display
Generator. The F-16 SCM has achieved
$43 million in cost avoidance as of
January 2003 and a projected $822 mil-
lion in cost avoidance through 2020.

Depot Maintenance Data
Challenges to supply chain management’s
ability to reduce total ownership costs are
largely caused by the lack of dependable
repair data, which is largely driven by a
general distrust of the current legacy
maintenance data systems. Antiquated
user interfaces increase repair costs by
requiring more time to input and retrieve
data.

Another challenge is that depot repair
facilities are inundated with many differ-
ent computer systems performing similar
functions that do not often interface with
each other. This often results in shop-
floor technicians being required to log
into multiple applications with multiple
user identifications and passwords. These
applications often require duplicate data
entry and cause frustration and errors
between systems. Also, the designs of
these systems often do not match the
business process of the repair facilities,
thus requiring the technicians to adapt
their processes to the system.

In one example, the system software
prohibited the technician from perform-
ing work on multiple items simultaneous-
ly. This forced the technician into a less
efficient mode of serial production in
order to accommodate the required soft-
ware. The technician sees data entry time
as impeding his or her primary goal, which
is to produce serviceable units. What the
depot technician really needs and wants is
a flexible, single-user interface to quickly
and easily enter all data documentation
about the repaired unit.

Several initiatives by Air Force leader-
ship to deploy obsolete information tech-
nology requiring extensive manual data
entry with no additional worker compen-
sation have died quick deaths. Thus, main-
tenance data documentation is regarded as

an expense that can be easily eliminated
from depot repair costs. However, by
declining to fund maintenance documen-
tation as the repairs are being performed,
SCMs are setting themselves up for a larg-
er expense later when a study must be
contracted to determine why the repair
facility is having problems with certain
parts. It is the old pay now or pay later lesson
with the latter needlessly expending many
more times the cost of continuous main-
tenance data documentation.

We live in a data-rich environment, yet
we are information poor. Today’s war-
fighting requirements are far different
than they were 20 years ago when legacy
data systems were initially designed and
deployed. The fiscal year 1996-2001
“Defense Planning Guidance” states the
following:

In order to support increasing
functional requirements for infor-
mation while implementing overall
reductions in the budget, the
Department must accelerate the
pace at which it selects and deploys
migration systems, identifies stan-
dard data, and conducts business
process re-engineering across all
functions. [1]

DRILS provides a Web-based, stream-
lined, user-friendly maintenance data doc-
umentation application for technicians at
the point of maintenance. An example of
how a technician can place an item into
work is shown in Figure 2. By using the
computer mouse to point and click, the part
number family is selected from the “Units
Currently in Shop” screen, which displays
all the items currently inducted into the
shop. The technician then selects the seri-
al number of the selected end item and it
is automatically placed into work thus ini-
tiating the in-work time clock, which
tracks the labor time expended on that
particular serial number.

DRILS also facilitates the collection
and reporting of serialized maintenance
data to Air Force worldwide data con-
sumers for decision support thus filling a
gap in legacy systems. An example of
repair history for a serially tracked Line
Replaceable Unit (LRU) is shown in
Figure 3 (see page 18).

Specifically, DRILS provides much
needed information and decision support
both at the point of maintenance and in
the SCM’s organization. The technician at
the point of maintenance is the only
source that we have of obtaining this
data.

Figure 2: Placing a Serial Number End Item in Work

Serialized Maintenance Data Collection Using DRILS

18 CROSSTALK The Journal of Defense Software Engineering October 2003

Both shop technicians and managers
can use the Shop Status features as
demonstrated in Figure 4.

Warfighter Support
Today’s warfighter does not have ready
access to serialized depot repair data that
could be used to diagnose faults in field-
ed weapon systems. The only option is to
test the failed parts and then send them to
the depot when they cannot be fixed
locally. Once the parts are sent to the
depot, the warfighter loses visibility of
them and never receives feedback about
the field diagnosis. This potentially results
in wasted resources and an inability to
investigate problems with training or
equipment. The fighter wing’s intermedi-
ate shops attempt to solve this problem
by keeping detailed logs or local databas-
es for trend analysis and bad actor identi-
fication.

To directly support the warfighter in
the field, DRILS provides a fighter wing
version of DRILS (using the same Web
server as the depot version) as shown in
Figure 5. Fighter wing intermediate shops
can track items sent to the depot, and
depot technicians can view the repair
activities performed on the serialized item
in the field. The entire repair history is

available to both the fighter wing inter-
mediate shop and depot personnel. The
warfighter version is being used currently
by the 388th and 419th Fighter Wings.

Legacy System
Modernization
The military continues to attempt infor-
mation system modernization with an
emphasis on integrating commercial off-
the-shelf (COTS) enterprise inventory
and resource-scheduling products that
promise shorter development and deploy-
ment time while improving supportability.
However, the method in which the mili-
tary performs and documents mainte-
nance is quite different from anything
currently in the commercial market. Thus,
there are no readily available COTS solu-
tions that can be employed without
requiring massive changes to military
maintenance documentation policy or to
the COTS product.

Each previous attempt has failed
because of the lack of focus to provide
benefits to the technician. Each has
attempted to swallow the elephant whole and
provide a standardized, enterprise-wide
solution where one size fits all yet the prod-
uct satisfies no one. The repair activities
vary from shop to shop, base to base, and

between military services.
The length of time it takes to develop

this type of solution is counter-produc-
tive to the overall military mission. A
development life cycle from concept to
enterprise deployment historically has
taken 10 years or more, ensuring that the
systems are obsolete when they are
deployed. Potential users are required to
forecast requirements 10 years out and
compete their requirements with other
enterprise users. The military cannot wait
10 or more years for new big-bang infor-
mation technology solutions. It is also not
practical to discard many years and dollars
invested in current legacy information
systems when they can still be utilized.

Current legacy systems that house
maintenance data such as the Enterprise
Data Warehouse perform a very valid
function. Their primary mission is to pro-
vide the capacity and processing power to
store terabytes of maintenance and other
data collected from worldwide sources.
Their secondary mission is to provide
weapon systems and enterprise-level deci-
sion tools to data consumers. However,
their breadth and scope of mission do
not allow them to be very responsive to
point-of-maintenance changes and tech-
nology advances.

DRILS Software Prototyping
Process
As can be seen by the previous discus-
sion, there are many challenges to collect-
ing, storing, retrieving, and using mainte-
nance data. To solve these challenges,
DRILS used rapid joint application proto-
typing and evolutionary development
techniques to elicit user interface require-
ments from shop-floor users and data
consumers. The purpose of using this
methodology was to field initial capabili-
ties and quick refinements to all users
faster than using traditional software
engineering approaches.

The DRILS development team was
able to learn and implement the users’
likes, dislikes, and their processes, earning
their trust early in the prototyping phase.
The development team solicited require-
ments from users over several iterations
of the software. Past mistakes such as
developing a system without user involve-
ment and dumping it on them, were avoid-
ed. The results of this prototyping are
being used to complete a software
requirements specification defining what
is currently thought to be close to a mature
application.

DRILS uses Macromedia’s Cold
Fusion MX as the front end while storing
and retrieving data using Oracle. A Web-

Figure 3: Repair History of a Serial Numbered LRU

Figure 4: Shop Status

Information Sharing

Serialized Maintenance Data Collection Using DRILS

October 2003 www.stsc.hill.af.mil 19

based application was selected so that
only the server software would need to be
updated in one physical location. Since
most people are familiar with Web-based
applications and Web browsers, training
time is focused on the work processes
and maintenance data collection.

During user development and testing,
defects were collected and the appropri-
ate developer notified automatically by
Cold Fusion as users exposed them.
Defects that were discovered during test-
ing prior to release were also collected
and measured. The average time to fix a
minor defect was about one hour.

Future DRILS Enhancements
Future development and expansion into a
more widely used product will be done
with tighter process controls. A configu-
ration control board will also be organ-
ized to evaluate and prioritize new and
changed requirements as well as major
defect fixes to form block releases for
implementation and deployment.
Releases will be coordinated to occur as
often as feasible depending on the num-
ber, size, and complexity of the changes.

The Software Engineering Institute’s
Team Software ProcessSM (TSPSM) will be
used to plan and track block upgrades and
user-requested changes, and expansion to
other organizations. Closer tracking of
TSP software development metrics dur-
ing future development phases and test-
ing will provide more accurate estimates
and on-time deliveries of more robust
DRILS application releases.

Support costs are a concern of many
users as DRILS is expanded into more
shops. Computer-based training, online
help, frequently-asked-question pages,
DRILS usability feedback, and experi-
mentation with training techniques are all
being considered to help reduce the over-
all support costs without sacrificing data
integrity and completeness.

Lessons Learned
The following are just a few of the les-
sons learned so far:
• You must work directly with cus-

tomers to understand and implement
their processes. Design and imple-
ment applications to actually help
users satisfy the what’s in it for me yearn-
ing.

• Rapid prototyping works well to
determine exactly what works and
how well. Interface screens were
developed overnight to incorporate the

process owners’ ideas and improve-
ments.

• When a prototype works, most people
think of it as production quality and
want all the documentation that a soft-
ware product normally contains.
DRILS software documentation was
delayed in order to focus on core
functionality and easy-to-use inter-
faces.

• Design applications so that they can
be easily modified to conform to
process improvements.

• Solve current problems while archi-
tecting to include future requirements.

• Data must be captured at the point of
maintenance and not estimated or
sampled.

Future Activities
Future activities include the following:
• Expand to 20th Fighter Wing

Component Maintenance Squadron
shop at Shaw Air Force Base.

• Participate in the U.S. Air Force serial
number tracking effort.

• Continue to expand in Ogden-Air
Logistics Center/avionics repair
shops, Tobyhanna Army Depot, and
Support Center Pacific.

• Expand to Ogden-Air Logistics
Center airborne generator shop.

• Interface with Inventory Tracking
System, Material Planning System,
Core Automated Maintenance
System, and Integrated Maintenance
Data System.

• Participate in the Shop Service Center
process improvement effort.

Conclusion
The warfighter, depot repair facility, and
SCM all need dependable part consump-
tion and serialized repair history data.
They need an agile, easy-to-use, mainte-
nance data documentation solution that
will facilitate and not hinder the collection
of dependable serialized repair data at the
point of maintenance.

Repair technicians both in the field
and at the depot need a solution that aids
rather than impedes their daily tasks. The
solution should be beneficial to the repair
technicians and the organizations that
need to access the data.

The SCM needs dependable part con-
sumption data to accurately forecast
future part needs as well as identify those
areas where efforts are likely to provide
the greatest return on investment. DRILS
fulfills these needs and is a key enabler for
future supply chain process and product
improvements. DRILS is a government-
owned maintenance documentation sys-
tem that is being developed by Total
Quality Systems, Inc. For more informa-
tion about DRILS, please contact the
authors.◆

Reference
1. Department of Defense. Defense

Planning Guidance. Fiscal Year 1996-
2001. Sec. III, Subsection F, Para-
graph 4.

Figure 5: Fighter Wing (Warfighter) View of DRILS

SM Team Software Process and TSP are service marks of
Carnegie Mellon University.

20 CROSSTALK The Journal of Defense Software Engineering October 2003

Information Sharing

About the Authors
Kevin Berk is the
Defense Repair Infor-
mation Logistics Sys-
tem program manager
for Total Quality
Systems, Inc., Ogden,

Utah. He has a wide range of expe-
rience in program management,
managing software development,
and process improvement in both
the public and private sectors. He
has a Bachelor of Science in physics
from the University of Central
Florida, a Bachelor of Science in
electrical engineering from
Michigan State University, and a
Master of Science in computer
engineering from the Air Force
Institute of Technology.

Total Quality Systems, Inc.
1990 West 2550 South
Ogden, UT 84401
Phone: (801) 731-2150
Fax: (801) 731-4457
E-mail: kberk@tqsinc.com

Capt. Greg Lindsey
is the Defense Repair
Information Logistics
System program man-
ager and is currently
stationed at Hill Air

Force Base, Utah. He began his Air
Force career as an F-4 Tactical
Aircraft Maintenance technician
and progressed to KC-135
Maintenance officer. He was select-
ed to participate in the Operational
Exchange Program and was
assigned to Wright-Patterson Air
Force Base, Ohio, where he led an
Integrated Logistics Acquisition
Team at the F-22 System Program
Office. He is a graduate of the
University of Central Florida.

OO-ALC/MAC
6090 Gum Lane
Hill AFB, UT 84056
Phone: (801) 586-6634
DSN: 586-6634
Fax: (801) 777-8159
E-mail greg.lindsey@hill.af.mil

American Society for
Information Science and
Technology
www.asis.org
Since 1937, the American Society for
Information Science and Technology has
been leading the search for new and bet-
ter theories, techniques, and technologies
to improve access to information.
Membership includes some 4,000 infor-
mation specialists from such fields as
computer science, linguistics, manage-
ment, librarianship, engineering, law,
medicine, chemistry, and education.

The Data Management
Association International
www.dama.org
The Data Management Association
(DAMA) International is a not-for-profit,
vendor-independent association of techni-
cal and business professionals dedicated to
advancing the concepts and practices of
information resource management and
data resource management. DAMA
International’s primary purpose is to pro-
mote the understanding, development and
practice of managing information and data
as a key enterprise asset.

Boxes and Arrows
www.boxesandarrows.com
Boxes and Arrows is an online journal ded-
icated to understanding the design of the
architecture and structure of digital spaces,
and often features articles on the craft of
information architecture. Boxes and
Arrows is a peer-written journal featuring
the sharing of exemplary technique, inno-
vation, and informed opinion of this field.
The journal strives to provoke thinking
among peers, to push the limits of the
accepted boundaries of these practices, and
to challenge the status quo by teaching
new or better techniques that translate into
results.

DoD 5000 Series Resource
Center
http://dod5000.dau.mil
The DoD 5000 Series Resource Center
provides a complete package of informa-
tion on the DoD 5000 Series documents,
including the official directive, operation
of the defense acquisition system, interim
defense acquisition guidebook, terminolo-
gy, a defense acquisition tutorial, frequent-
ly asked questions, and more.

WEB SITES

November 2-5
Amplifying Your Effectiveness Conference

Phoenix, AZ
www.ayeconference.com

November 5-7
Association for Computing Machinery

SenSys ‘03
Los Angeles, CA

www.cens.ucla.edu/sensys03

November 10-12
PDF Conference: Expanding the

PDF Frontier
Anaheim, CA

www.pdfconference.com

November 15-21
Supercomputing Conference 2003
Igniting Innovation Conference

Phoenix, AZ
www.sc-conference.org/sc2003

November 17-20
4th Annual National Guard Bureau

IT Conference
Las Vegas, NV

www.technologyforums.com/ngb

November 17-20
14th IEEE International Symposium on

Software Reliability Engineering
ISSRE 2003
Denver, CO

http://salieri.cs.colostate.edu:8000/

November 17-21
2nd International Conference on

Software Process Improvement
Washington, DC
www.icspi.com

March 30-31, 2004
3rd Annual Southeastern Software

Engineering Conference
Huntsville, AL

www.ndia-tvc.org/SESEC

April 19-22, 2004
2004 Software Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

October 2003 www.stsc.hill.af.mil 21

During the 15 years we have been
observing companies and helping

them improve, a common cause of irrel-
evant or overwhelming stacks of paper
has been a lack of purpose or objective
for each document. When we ask the
average project team member why he or
she has so much documentation, a com-
mon answer is, “Because my organiza-
tion requires me to fill out the tem-
plates.” If we ask about the usefulness
of such documentation, a typical reply
is, “I guess it will provide a trail of what
has happened so that management can
study my project later.”

In hindsight, few people ever go
back and plow through the stack. With
purposes as unclear as these, it is not
surprising that people merely fill out the
templates. What is the purpose of docu-
mentation? Here are two examples:
• Project documentation is a method

of capturing and sharing critical
project concepts, plans, and informa-
tion as they are developed so that
impacted parties can share this infor-
mation, make informed decisions,
and move the project forward.

• Process documentation is a method
of capturing and sharing engineering
and management practices so that an
organization can remember, reuse,
and refine its skills and avoid rein-
venting lessons learned and best
practices for each new project.
Process documentation can include
templates, procedures, and checklists.
Note that we did not include in our

definition “evidence to please managers
or auditors.” Defining the information
required to manage a project effectively
creates natural documents that provide
ample evidence of certain practices
occurring. For example, if we plan a
project correctly and capture the details
so they can be communicated to others,
the natural document that results (the

plan) should be ample evidence that
planning took place. Evidence is free
when good practices are followed.

Strategies for Making
Documentation Practical
There are several techniques to make
documentation concise and practical.
They include the following:

• Focus documentation on the organi-
zation’s needs.

• Merge duplicate work products.
• Remove redundancy in templates.
• Simplify “best practice” (process)

documentation.
• Consider one representation.
• Consider one page per process or

sub-process.
• Merge documented procedures and

related work product templates.
• Use process descriptions as audit

checklists.
The following sections describe these
techniques in greater detail.

Focus Documentation on the
Organization’s Needs
Answer the following questions to deter-
mine the organization’s needs for each
document:
• What goal are you trying to achieve;

what role does this document play
with respect to this goal?

• What problem are you trying to solve
with this document?
These questions cause you to focus on

the specific purpose of each document;
your responses scope the document and
provide you with an end point.

In one software development group,
50 percent of each requirements docu-
ment contained information describing
how the product was going to be built
instead of focusing on what the product
was going to do for the end user. The lack
of a clear goal allowed the specification to
become a catchall document with no end
point. The following is an example of a
goal for a requirements document:

Capture the needs of our cus-
tomers by defining the tasks they
need to perform and expectations
they must have met in the solution
we deliver (e.g., performance and
reliability targets).

An example of a requirements tem-
plate that captures user needs and other
expectations is shown in Figure 1 (see
page 22) [1].

Merge Duplicate Work Products
When project documents contain similar
information and there is little benefit in
keeping them separate, consider merging
them. For example, if there are three doc-
uments to complete – Statement of Work,
Product Requirements, and Contractual
Requirements – and each will contain the
same information, consider one docu-

The Documentation Diet

Neil Potter and Mary Sakry
The Process Group

We hate to do project and process documentation and are upset when it only seems like irrelevant paperwork that is done to
please some external party. However, when we do not have any documentation, we can feel left in the dark because of a lack
of direction and clear communication among colleagues. If your project is experiencing either too much or too little documenta-
tion, or your company improvement program is really no more than a documentation exercise, there is an effective middle ground;
one that allows you to be productive in your projects, but not taxed with irrelevancy. This article discusses strategies you can
use to make documentation work for you. The examples contain a mix of project and process documentation scenarios.

Best Practices

“Defining the
information required
to manage a project
effectively creates

natural documents that
provide ample evidence

of certain practices
occurring ... Evidence is

free when good practices
are followed.”

ment. In the document, cross-reference
the other two templates that this docu-
ment satisfies. If there are differences in
the three documents but considerable
overlap, write one set of requirements and
label those items that are Statement of Work
as deliverables, and those that are
Contractual as requirements.

If you are using an improvement
framework such as the Software
Engineering Institute’s (SEI) Capability
Maturity Model® (CMM®), consider merg-
ing work products together to implement
specific practices. For example, a Software
Configuration Management (SCM) plan,
Software Quality Assurance (SQA) plan and
Software Development Plan (SDP) can be
merged. Milestones and activities for SCM
and SQA might be listed on the master
schedule in the SDP.

If your project is required to write
maintenance documentation so future
teams can understand the program’s inter-
nal workings, consider the overlap
between this manual and the other work

products that have been created. A cur-
rent design document already states the
architecture, data flow, algorithms, meth-
ods and interfaces, so there should be no
need to duplicate this information in a
maintenance manual.

A current requirements document
states the functionality and behavioral
characteristics of the product, so the
maintenance manual should not need to
repeat this information either. Determine
what unique information is needed for a
maintenance person and scope the docu-
ment to just this need. Cross reference
existing work products to make the main-
tenance manual complete.

Remove Redundancy in Templates
Closely examine sections within each tem-
plate that are redundant. The template
might have looked sound when first creat-
ed, but during use you might find that
some of the sections contain the same
information. Each use of the template is
an opportunity to put it on a diet. For

example, the requirements template on
the left in Table 1 can be slimmed down to
the template on the right in Table 1 when
it is realized that everything said in sec-
tions 1 and 4 have already been said in sec-
tions 2 and 3.

Figure 2 describes an example of a
design template. In this example, items 5.6
and 5.7 are potentially overlapping and
could be merged.

Simplify Best Practice (Process)
Documentation
Process documents can also suffer from a
lack of purpose clarity. For example, sup-
pose you are on the Best Practices
Definition committee, or your group is
using the SEI CMM, and you have been
chartered to develop a process for creating
project schedules [2]. You might be tempt-
ed to build the world’s greatest and most
comprehensive schedule creation process,
with all known bells and whistles. The
document could restate the CMM text,
include references to numerous books on
the subject, and refer to Critical Chain
Analysis (whatever that is!). The appendix
could include three pages of cross-refer-
ences to other models and standards.

Alternatively, ask the first question,
“What goal are you trying to achieve; what
role does this document play with respect
to this goal?” For example, the goal could
be to determine which product features
could be completed by the established
delivery deadline given the available
resources. This process describes how to
develop a schedule to help achieve that
goal.

The second question, “What problem
are you trying to solve with this docu-
ment?” enumerates needs for the docu-
ment to address. An example of a need is
to prevent your project from chronically
over-committing, causing financial loss to
the company. Now write a small process
to accomplish these two items. An exam-
ple is shown in Table 2.

When do you stop defining this
process? Stop when your goal has been
achieved (e.g., scoping the project) and
your problem solved (e.g., avoiding over-
commitment). Refine the document fur-
ther when it no longer meets the need.

Consider One Representation
Write processes using one representation.
For example, if you are creating a process
for risk management, it would be redun-
dant to have one file of presentation
slides, the same process formatted using a
word processor, a version in HTML for

22 CROSSTALK The Journal of Defense Software Engineering October 2003

Requirements Specifications Revised Requirements Specifications
1. Product Objectives
2. Business Requirements
3. Product Advantages
4. Value Proposition

1. Business Requirements
2. Product Advantages

Table 1: Redundant Template Sections Are Removed

Requirements Template
Instructions for Template Use
~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~

1. Introduction
1.1 Purpose
1.2 Intended Audience

2. Business Requirements
2.1 Business Requirements 1.N 
2.2 Product Scope (Context Diagram)

3. Overall Description
3.1 User Classes and Characteristics
3.2 Operating Environment
3.3 Assumptions and Dependencies

4. External Interface Requirements
4.1 User Interfaces
4.2 Hardware Interfaces
4.3 Software Interfaces
4.4 Communications Interfaces

5. Use Cases (UC)
5.1 UC Name 1
5.1.1 UC Details
5.1.2 Business Rules For UC 1
5.1.3 Functional Requirements for UC 1
5.x UC Name x

6. Other Nonfunctional Requirements
6.1 Performance and Reliability Requirements
6.2 Business Rules (Global)

Appendix A: Glossary
Appendix B: To Be Determined List

Note: Adapted from IEEE Standard 830-1998

Figure 1: An Example Requirements Template 

  Design Template
Instructions for Template Use
~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~

1.0 Purpose
2.0 Global Data Dictionary
3.0 Design Method

3.1 Function-oriented design
3.2 Data-oriented design
3.3 Real-time control-oriented design
3.4 Object-oriented design

4.0 Software Architecture
5.0 Module Attributes

5.1 Module purpose
5.2 Performance requirements
5.3 Communication protocol
5.4 User interface (if applicable)
5.5 Local data structures
5.6 Algorithm
5.7 Flow diagram
5.8 Error handling

Figure 2: Example Design Template

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office.

Best Practices

The Documentation Diet

October 2003 www.stsc.hill.af.mil 23

browsing, and the same information again
using a flow diagramming tool.

Instead, determine how the process
document will be used (e.g., online use by
developers during project execution, or in
a classroom setting with 100 people being
trained). Then consider one representa-
tion that can suit all needs. For example, a
presentation slide format can be printed
for reading, e-mailed for sharing, present-
ed for teaching, and uploaded for brows-
ing.

Consider One Page Per Process or
Sub-Process
There are approximately 60 lines on a
page and 10 words per line. That is quite a
lot of information. So consider keeping
process documentation to one or two
pages (at least at the beginning).

Processes can be kept to one or two
pages by limiting how much detail you
allow yourself to write. Unless you plan
on writing forever, you have to put some
limit on the document, so start with one
page. When you are tempted to add more
explanation and detail, refine what you
have defined; do not necessarily add more
sections.

Merge Documented Procedures and
Related Work Product Templates
Organizations using process improve-
ment frameworks such as the SEI CMM
and ISO 9001 might be tempted to write
procedures because the framework states that
they are needed. Creating a template to assist
the procedure user (for example, a tem-
plate for an SCM, SQA, or project plan)
often follows procedure creation.
Creating both a procedure and template
can lead to redundancy. An alternative
approach is to embed the instructions for
completing a template in the template
itself. The procedure and the template are
the same document. For example, the
CMM practice “Create an SCM plan
according to a documented procedure,”
can be implemented by developing a
lightweight template with embedded
instructions for use (see Figure 3).

Use Process Descriptions as Audit
Checklists
If you have a process assurance function
that audits projects for process compli-
ance, use the process descriptions that the
projects use; do not write a separate audit
checklist. Write processes (for example,
estimation, schedule creation, and change
control) in a style that can be used for
both project and audit purposes. It might
be necessary to provide auditors with
some additional guidance in conducting

the audit and reporting the results. It is
unnecessary to duplicate the same
process information in a different format.

Knowing When You Are in Trouble
An organization is in document trouble when
project team members create documents
that have little use or value. This can
occur when either the team members are

unclear about a document’s purpose or
when a document is created to satisfy the
needs of an external auditor or assessor.

In the first scenario, a committee is
typically formed to define a specific phase
of the software life cycle. The template is
the committee’s deliverable. The template
is successfully used on a few projects and
is then made standard operating proce-
dure. When the template contains more
sections than needed, and when the larg-

er audience is not trained in the template’s
purpose, too many project teams fill out
the template with redundant information.
At this point, the resulting document can
be viewed as unnecessary.

In the second scenario, project team
members believe they have to create addi-
tional documentation to prove to an
external auditor or assessor that the proj-
ect is being managed correctly. Memos
capturing meeting discussions, state-
ments-of-work documents summarizing
product requirements, and design docu-
ments that are created after the code has
shipped are produced to pass the audit. The
team views documentation as an activity
unrelated to building the product. It is a
keep management happy tax.

In this second scenario, the cause can
be due to poorly trained auditors who
look for paperwork but do not really
understand the fundamental engineering
or management practices that are desired
of the project teams. For example, the
auditor looks for a statement-of-work
document even though a detailed set of
requirements exists that covers the same
information. Minutes of meetings are
examined even though the project is six
months behind and none of the correc-
tive actions during those six months have
been implemented. Here, the auditor
needs education, and the documents
required of the team need tailoring.

Pleasing an auditor can also occur when
the project team members have not ana-

Schedule Creation Process to Scope a Project
and Avoid Financial Loss Due to Over-Commitment

1. Determine project tasks.
2. Determine project task dependencies:

a. For each pair of tasks (A+B), ask, "Must task A complete before task B starts, or can both tasks
execute in parallel?"

b. Draw dependency between tasks.
3. Add effort estimates for each task (uninterrupted time).
4. Add resources to each task (people, equipment, resource assumptions).
5. Add resource availability, i.e.:

a. Planned percentage each resource will be allocated.
b. The dates each resource is available.

6. Overlay desired project completion deadline. If the deadline is impossible, ask:
a. What features fit within the deadline? Is this a satisfactory list?
b. What options are available to achieve the deadline (e.g., make/buy tradeoffs, adding resources to

the critical path, simplifying features, subcontracting work out, reusing existing code).
c. What features should be demoted for later release?

7. Present data, schedule options, and risks to management and the customer. Agree on a schedule
that has acceptable customer satisfaction and acceptable risk of failure.

Table 2: A Schedule Creation Process

SCM Plan Template Instructions
Step 1: List Configuration Items

– x, y, z
~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~

Step 2: Establish File Naming Conventions
– File-x<n>.doc

~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~

Step 3: Establish Baseline File Structure
– ~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~

Figure 3: Combined SCM Plan Creation Procedure and Template

“An organization
is in document trouble

when project team
members create

documents that have
little use or value.”

lyzed why an engineering or management
practice (and its associated document) is
required, and how they could benefit
from it. In such cases, the team reacts to
the process requirement without under-
standing why the requirement is there.
Here, the team needs training on the pur-
pose and correct use of each specific
document. If the project is performing
the required practices correctly, the natu-
ral documents produced should be essen-
tial for team operation and be adequate
for any auditor or assessor. The goal is no
extra paperwork.

Summary
Software development is not about docu-
mentation. Software development is
about creating solutions that help meet
customer needs. Process improvement is
not about documentation. Process
improvement is about fixing critical prob-
lems in the organization and capturing
the solutions for reuse and refinement.

Excess documentation is often the
result of poor clarity of purpose and
inadequate understanding of how each
document should be used. When docu-

ments are written with a clear business
goal and need in mind, they become
important and useful.◆

References
1. Institute of Electrical and Electronics

Engineers. Recommended Practice
for Software Requirements Specifi-
cations. Piscataway, NJ: IEEE
Computer Society Press, 1998
<ht tp ://shop. i e e e .o rg/s to r e/
product.asp?prodno=SH94654>.

2. Software Engineering Institute’s
Capability Maturity Model (V1.1)
Software Project Planning Activity 12.

Additional Reading
1. Potter, N., and M. Sakry. Making

Process Improvement Work – A
Concise Action Guide for Software
Managers and Practitioners. ISBN 0-
201-77577-8. Reading, MA: Addison-
Wesley, 2002.

2. Paulk, Mark C., Charles V. Weber, and
Bill Curtis. The Capability Maturity
Model: Guidelines for Improving the
Software Process. Reading, MA:
Addison-Wesley, 1995.

Best Practices

24 CROSSTALK The Journal of Defense Software Engineering October 2003

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave.

Bldg. 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

MAY2002 � FORGING THE FUTURE OF DEF.

AUG2002 � SOFTWARE ACQUISITION

SEP2002 � TEAM SOFTWARE PROCESS

NOV2002 � PUBLISHER’S CHOICE

DEC2002 � YEAR OF ENG. AND SCI.

JAN2003 � BACK TO BASICS

FEB2003 � PROGRAMMING LANGUAGES

MAR2003 � QUALITY IN SOFTWARE

APR2003 � THE PEOPLE VARIABLE

MAY2003 � STRATEGIES AND TECH.

JUNE2003 � COMM. & MIL. APPS. MEET

JULY2003 � TOP 5 PROJECTS

AUG2003 � NETWORK-CENTRIC ARCHT.

SEPT2003 � DEFECT MANAGEMENT

To Request Back Issues on Topics Not

Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@

hill.af.mil>.

About the Authors
Mary Sakry is co-
founder of The Process
Group, a software-engi-
neering process im-
provement consultancy.
She has 28 years of

experience in software and process
engineering. For 15 years she was a
manager and software engineer at Texas
Instruments (TI). In 1989, she led TI’s
worldwide process assessment effort
and was a member of a Software
Engineering Process Group. Sakry is a
Software Engineering Institute-author-
ized assessor for CBA-IPI and SCAMP-
ISM appraisals and an “Intro to CMMI”
instructor. She has Bachelor of Science
in computer science and a master’s
degree in business administration. She is
co-author of “Making Process
Improvement Work – A Concise Action
Guide for Software Managers and
Practitioners.”

The Process Group
P.O. Box 700012
Dallas,TX 75370-0012
Phone: (972) 418-9541
Fax: (972) 618-6283
E-mail: help@processgroup.com

Neil Potter is co-
founder of The Process
Group, a software-engi-
neering process im-
provement consultancy.
He has 19 years of

experience in software and process
engineering. For six years, Potter was a
software engineer at Texas Instruments
(TI). For two years, he managed a TI
Software Engineering Process Group
spanning America, England, and India.
Potter is a Software Engineering
Institute-authorized assessor for CBA-
IPI and SCAMPISM appraisals and an
“Intro to CMMI” instructor. He has a
Bachelor of Science in computer sci-
ence from the University of Essex
(United Kingdom) and is co-author of
“Making Process Improvement Work –
A Concise Action Guide for Software
Managers and Practitioners.”

The Process Group
P.O. Box 700012
Dallas,TX 75370-0012
Phone: (972) 418-9541
Fax: (972) 618-6283
E-mail: help@processgroup.com

October 2003 www.stsc.hill.af.mil 25

The computer science community has
introduced design patterns as a means

of capturing and documenting solutions
to common software problems [1, 2]. An
important aspect is the combination of
patterns. In “Design Patterns” [1], the
authors discuss how patterns dovetail and
intertwine in good software. Nevertheless,
combining patterns into a good overall
architecture has received less attention
than the individual patterns. In much of
the literature, each pattern is often pre-
sented separately along with a discussion
of how it fits into a resulting class dia-
gram. This assumes that the class diagram
exists when you present your patterns.

In this article, we present not only how
different patterns are used in software
architecture, but also how we evolved the
architecture by successively integrating
more patterns to deal with particular
design problems. We present the individ-
ual patterns, their interaction, and the
questions that arise when they are com-
bined.

The example we use is a software sub-
system of a new generation of surveil-
lance radar constructed by Ericsson
Microwave Systems (EMW) in Mölndal,
Sweden. This subsystem contains the
modules that handle tracking, communi-
cation with external devices, threat evalua-
tion, etc. A major problem with the soft-
ware of an earlier radar system was that
the modules were too interdependent. If
you wanted to use only one part for a new
product, you often had to include all mod-
ules even though the functionality was not
needed.

When the new architecture was con-
structed, one premise was to maximize
reuse. The main reason was the business
situation for the surveillance radar system.
The trend was that each customer bought
a small series but still required consider-
able tailoring to his or her needs. To
encourage reuse, the different compo-
nents had to be made more independent
and flexible. A function had to be coupled

to as few other components as possible,
and direct dependencies had to be elimi-
nated or minimized.

An important guideline in the architec-
tural design was the requirement for mod-
ifiability. The following sources of modifi-
cations were especially considered:
1. Replacement of hardware and operat-

ing system.
2. Different customers’ functional

requirements.

In the following, we first discuss how
the system was made adaptable to new
hardware and software, and then how it
was designed to accommodate changes in
customer requirements in general and
requirements for presentation and control
in particular.

Adaptability to New Hardware
and Operating System
To facilitate future changes of hardware
and operating system, a layered architec-
ture was introduced. The system was
structured in terms of components, which
were placed in three layers with applica-

tion-oriented components at the top and
hardware and operating system dependent
components at the bottom. This is a time-
honored architectural style with the Open
Systems Interconnection protocol stack as
a classic example [3].

The Layers Architectural Pattern
The Layers pattern is described in [2]. In it,
the system is structured as a number of
layers that represent different levels of
abstraction. We introduce the following
three layers from top to bottom:
• The application layer containing the

functionality required of the system.
• The support layer containing parts

shared by the applications. An impor-
tant role for this layer is to act as data
storage for the applications. For maxi-
mum independence between applica-
tions, their input and output data is
stored in the support layer. That way,
the applications need not be directly
aware of each other but instead
depend on the database components
in the support layer.

• The core layer containing components
that depend on the operating system
or the hardware.
A principle of the Layers pattern is

that the components in each layer only
know of and use components in lower lay-
ers. In our case, this means that the com-
ponents in the application layer only know
and use components in the support layer
(and possibly the core layer). This princi-
ple automatically makes the components
in the application layer independent, but
sometimes forces you to introduce addi-
tional layers, potentially complicating the
solution. For simplicity, it is sometimes
reasonable to compromise and let some
components in a layer know of each
other. Still, a component should never
need to know of a component in a higher
layer.

Architectural Components
The layered architecture is shown in

Software Architecture as a Combination of Patterns

Kent Petersson and Tobias Persson
Ericsson Microwave Systems

Ericsson Microwave Systems in Sweden was confronted with the problem of constructing a radar system that could withstand
the replacement of hardware and operating system software and be adaptable to different customers’ functional requirements.
This was accomplished by means of software architecture with highly independent and flexible components that is a combi-
nation of four design patterns: Layers, Pipes and Filters, Observer, and Model-View-Controller.

Dr. Bo I. Sanden
Colorado Technical University

Software Engineering Technology

“A principle of the
Layers pattern is that the

components in each
layer only know of and

use components in lower
layers ... the components
in the application layer

only know and use
components in the
support layer ...”

26 CROSSTALK The Journal of Defense Software Engineering October 2003

Figure 1. The following are some of the
components in the Core layer:
• System Time (Time). This component

allows the system to run at a user-
defined time in a simulation mode.
With multiple instances of this com-
ponent, real time and simulated time
can be used concurrently.

• Time Synchronization (TSync). With
different parts of the system running
on different hardware nodes, synchro-
nizing the system time on each node is
critical.

• Communication Protocols (Comm).
This component includes components
dealing with low-level communication
protocols tailored for specific applica-
tions.

• Built-in Test (BiT). These modules
handle hardware testing.

Adaptation to Customer
Requirements
Customers have differing functional
requirements for at least two reasons.
First, different customers need more or
less functionality depending on how they
intend to use the radar system in their
overall system structure. Some want a
basic system while others want a deluxe
version.

Second, customers must integrate the
system they buy into a larger system
whose interfaces vary considerably. This
has led to a lot of reconstruction of the
radar system over the years. The interface
to the human operators is particularly vari-
able.

To solve the problem with differing
customer requirements, we designed
architecture for a complete system with

full functionality. It defines how the entire
system would work even if EMW would
only realize parts of it. This architecture is
broken into subsystems that are suffi-
ciently independent to allow for all rea-
sonable variations. Designing a system
that includes all possible variants is not a
design pattern but a widely applicable
design principle.

The Data Flow Principle
The decomposition into subsystems was
done according to the Data Flow
Principle. In this common architectural
style, you study how data flows through
the system and divide it into subsystems
at suitable points in the data flow. For
example, radar can be divided into a

transmitter, antenna, receiver, signal
processor, data processor, or presenta-
tion, reflecting the path of a radar pulse
through the system. Radar data process-
ing has traditionally been structured along
the same lines. One common structure is
as follows: target tracking, data fusion,
threat evaluation, and engagement plan-
ning. Most of those involved know and
understand this structure.

The Design Pattern: Pipes and Filters
The pattern that supports data flow is Pipes
and Filters [2]. It is intended to solve the
problem of structuring a big system that
transforms a stream of data. Designing
such a system as a single component is
unwise and makes the system inflexible
and vulnerable to future changes. For this
reason, the system is divided according to
how data flows as shown in Figure 2. We
primarily use this pattern to structure the
application layer, but it also has implica-
tions for the support layer.

Composition of Layers and Pipes
and Filters
The problem is how to fit both the Layers
pattern and the Pipes and Filters pattern
into the architecture. The Layers pattern
structures the system vertically while
Pipes and Filters structure it horizontally.
We had to find an architecture that retains
the desirable features of each pattern.
Using Pipes and Filters directly on the
application would make those application
components that represent the filters
aware of each other. This defeats one of
the goals of the Layers pattern, namely
application independence.

The solution was to put data storage
components that work as buffers between
the different applications – that is, the
pipes in the Pipes and Filters pattern – in
the support layer. Figure 3 shows the
architecture with the Layers and Pipes
and Filters patterns combined. This solu-
tion radically reduces the coupling
between applications. By also making the
components independent in terms of
synchronization, we minimize the cou-
pling between the components that pro-
duce and consume data. It is the case that
a real-time system sometimes produces
data faster than it can consume it, and a
direct coupling between producer and
consumer may then lead to the use of
stale data. It is often better to discard the
old data and continue with the relevant
information.

With a separate data storage compo-
nent we can isolate the problem and store
valid data only without involving the pro-
ducer or consumer. The producer pro-

Application Layer

Support Layer

Core Layer

Time TSync BiTComm

Figure 1: Layered Architecture With Some of the Core Layer Components

Tracking Data Fusion
Threat

Evaluation
Engagement

Planning
Data FlowData FlowData Flow

Note: Arrows indicate the data flow between components.

Figure 2: The Pipe and Filters Pattern

Software Engineering Technology

“The flexible and
independent structure

of the architecture
was very useful when
combining components
to meet the customers’

different needs and
resulted in reduced cost
as well as faster delivery

of the projects.”

Software Architecture as a Combination of Patterns

October 2003 www.stsc.hill.af.mil 27

duces data at one rate, and the consumer
consumes it at a different rate. The data
storage components ensure that the most
current data are used.

Event Handling
The simple model with the components in
the application layer decoupled by means
of data storage components in the sup-
port layer works for data that are pro-
duced and consumed continuously. Other
data, which may be associated with differ-
ent events or operator controls, do not fit
in this model. This is because changes
occur rarely, but the application must react
very quickly to them. In a data flow solu-
tion, an application that is dependent on a
certain control would have to query the
data storage component for its status quite
often. Most of the time, the control would
be unchanged. This is inefficient, but on
the other hand, allowing the data storage
component or some other application to
send the information directly to another
component in the application layer would
create a strong dependence between com-
ponents.

The solution is to introduce an event
handling mechanism. Applications sub-
scribe to an event by calling an event han-
dler. When another application generates
an event, which may carry with it other
(changed) information, the subscribers are
informed of the occurrence and can re-
trieve the additional information from the
data storage components.

This kind of event handling reduces
the coupling between the event-generating
component and the subscribers; they need
not be aware of each other. The approach
is quite resilient to system changes. The
event-handling mechanism works even if
a certain subscriber is absent in a given
variant of the system. Not even the event
generator has to be present in all system
variants, which will then lack certain func-
tionality. A drawback is that event han-
dling is an unstructured and dynamic way
of information exchange comparable to
exception handling and should be used
restrictively.

The Design Pattern Observer
A design pattern that captures the idea
behind the event handling described earli-
er is called Observer [1]. It is also referred to
as Publish/Subscribe [2] and is used to syn-
chronize the state of cooperating compo-
nents. The component that detects the
state of change publishes a message that is
then forwarded to any number of sub-
scribers.

The pattern solves the problem where
many different components must be

informed of a relatively rare event in a
flexible way. The salient feature of
Observer is the reduced coupling between
the publisher and the subscribers.

Presentation and Control
Presentation and control are particularly
susceptible to rework due to different cus-
tomer requirements. Changes are difficult
to predict because the requirements for
presentation and control tend to be unique
to each customer. The structuring of the
user interface is often fundamental to the
architecture of any application of which it
is a part. There are two possibilities:
1. Separating presentation and function-

ality with the rationale that the presen-
tation represents one cohesive unit,
and functionality another. That is, cer-
tain functionality is considered more

closely coupled to another functionali-
ty than to its own presentation. The
Model-View-Controller (MVC) pattern
captures this approach [2].

2. Tying functionality more closely to its
presentation than to another function-
ality. A pattern that captures this view
is Presentation-Abstraction-Control [2].
In our application, the concrete pres-

entation and control are collected in one
component: Operator Presentation and
Control (OPC). This component is the
entire program’s interface to the human
user. Changes concerning the concrete
presentation and control are localized in
one component according to MVC [2].

The Design Pattern MVC
The MVC pattern divides the world into a
model, a presentation part, and a control

Application Layer

Support Layer

Core Layer

Time TSync BiTComm

Plot Data
Local Tracks

Data
Threat Data

Systems Tracks
Data

Engagement
Data

Tracking
Threat

Evaluation

External
Tracks Data

Data Fusion
Engagement

Planning

Data Stores

Data
Flows

Note: Data storage components have been added in the support layer.

Figure 3: Combining the Layers Pattern with Pipes and Filters

Application Layer

Support Layer

Core Layer

Plot Data
Local Tracks

Data
Threat Data

Systems Tracks
Data

Engagement
Data

Tracking
Threat

Evaluation

External
Tracks Data

Data Fusion
Engagement

Planning

Data Stores

Model

Operator
Presentation
and Control

Comm/
Distribution

Control/View

Figure 4: The Architecture After Applying the MVC Pattern

part. For compatibility with our own
earlier designs, we used a variant, also
described in [2], where the presentation
and control parts are combined, while
the model remains separate and con-
sists of all the data storage components
in the support layer.

The problem that MVC intends to
solve is that user interfaces are especial-
ly vulnerable to change requests, and
lead to many program modifications. A
change to the presentation of one part
of the system often forces a change to
another part’s presentation. It is hard to
build a presentation with the required
flexibility. Instead one can accept the
situation and just structure the system
so that all parts that handle the presen-
tation are separated from the model.

Combining MVC With the Earlier
Patterns
In the final architecture, MVC must
obviously be combined with the earlier
patterns. Figure 4 (see page 27) shows
how it fits. The control/view part con-
sists of two components: OPC for the
actual presentation and Communi-
cation/Distribution for the distribution
of data to external systems. The MVC
pattern supports the idea that external
communication is just another form of
presentation. This means that external
communication, which also tends to
vary drastically between projects, can be
handled in the same way as presenta-

tion. Figure 4 shows how the compo-
nents for presentation and external dis-
tribution are incorporated into the
architecture. The data that are present-
ed and distributed are in the data sup-
port layer, which is in accordance with
MVC.

Conclusion
The resulting architecture shows that
the four patterns, Layers, Pipes and
Filters, Observer, and Model-View-
Controller, can be combined quite ele-
gantly in radar software. We have also
shown that it is possible and beneficial
to use design patterns in a large and
very complex application. The same
overall architecture has been used in
seven different projects with quite dif-
ferent functionality in the human-
machine interface, external communica-
tion, and command-and-control parts.
In five of these projects, the design and
implementation of the software is now
completed. The flexible and independ-
ent structure of the architecture was
very useful when combining compo-
nents to meet the customers’ different
needs, and resulted in reduced cost as
well as faster delivery of the projects.

We believe that you can expect to
continuously improve and refactor the
software architecture during its entire
lifetime. For example, the OPC needs
to send commands and controls to the
application components in a more effi-

cient way. Another example is the inner
structure of the OPC component.
Finally, it may be desirable to split the
view and the controller of the MVC
pattern into separate components.

In this article, we have only
described a logical view of the compo-
nents and ignored the mapping to phys-
ical processes and machines. Further
work has been initiated to see how
components can be structured and
delivered as distributed applications
that can execute on different nodes in a
network.◆

Acknowledgment
The patterns work was partially sup-
ported by the Swedish Defense Materiel
Administration, Försvarets Materielverk
through the FOTA project.

References
1. Gamma, Erich, Richard Helm,

Ralph Johnson, and John Vlissides.
Design Patterns – Elements of
Reusable Object-Oriented Software.
Addison-Wesley, 1995.

2. Buschmann, Frank, Regine Meunier,
Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern-Oriented
Software Architecture: A System of
Patterns. John Wiley, 1996.

3. Day, J. D., and H. Zimmermann.
The OSI Reference Model. Proc. of
the IEEE. Vol. 71, Dec. 1983: 1334-
1340.

28 CROSSTALK The Journal of Defense Software Engineering October 2003

About the Authors
Kent Petersson is cur-
rently working on soft-
ware architectures at
Ericsson Microwave
Systems in Mölndal,
Sweden. He has a back-

ground as associate professor at the
Department of Computer Science at
Chalmers University of Technology in
Gothenburg. His research interests
include program verification, type sys-
tems, and functional programming.
Petersson received his degree in mathe-
matics and computer science from the
University of Gothenburg, Sweden.

Ericsson Microwave Systems AB
Surveillance and Communication
Systems
SE-43184 Mölndal
Sweden
E-mail: kent.petersson@

ericsson.com

Bo I. Sanden, Ph.D.,
is professor of comput-
er science at Colorado
Technical University in
Colorado Springs. He
spent 15 years as a soft-

ware architect with UNIVAC and
Philips. His main research interest is
software design. Sanden has a Master
of Science in engineering physics from
the Lund Institute of Technology,
Lund, Sweden, and a doctorate in com-
puter science from the Royal Institute
of Technology, Stockholm.

Colorado Technical University
4435 North Chestnut St.
Colorado Springs, CO 80907-3896
Phone: (719) 531-9045
Fax: (719) 598-3740
E-mail: bsanden@acm.org

Tobias Persson is manager of a soft-
ware design group for Ericsson
Microwave Systems and has worked at
the company as a software engineer in
radar projects. Persson has a Master of
Science in computer science from the
University of Gothenburg, Sweden.

Ericsson Microwave Systems AB
Surveillance and Communication
Systems
SE-43184 Mölndal
Sweden
E-mail: tobias.persson@

ericsson.com

Software Engineering Technology

The concept of data warehouse has
given new hope to providing a solu-

tion to the ever-increasing need for more
information. A data warehouse is a collec-
tion of data designed to support manage-
ment decision-making. It contains snap-
shots of summarized and extracted data
from operating systems that are stored in a
warehouse database system that provides
flexible access to information. CASEware
Technology Inc. has applied the technolo-
gy of Computer Aided Software
Engineering (CASE) tools and concepts to
forge the way to implement the data ware-
house.

Today, most corporations are finding
the legacy systems of the ’70s and ’80s do
not provide the path needed to compete in
today’s market. The technology available
for development of these systems did not

allow them to be designed from a global
view. As a result, the systems were highly
specialized and focused on specific func-
tional areas of the business such as
finance, human resources, material man-
agement, etc. Information between these
systems was not integrated or shared. As a
result, individuals cannot access complete
information. The age of interfaces grew
out of the need for complete information.
These interfaces, however, are very time
consuming, complex, and difficult to
change. New systems are even more diffi-
cult to implement because of the interface
issues of unplugging the old system. As a
result, old systems never go away.

When interfacing could not fulfill the
need for more information, power users
resorted to downloading data from the
legacy systems to provide them with the

necessary information. In an isolated inci-
dent, this works fine. However, as the need
for information increases, more and more
information is required until these require-
ments become unmanageable. It is no
wonder that as the need for more inter-
faces, downloads, reports, etc. increases
that information systems soon became
backlogged with no hope for digging out.
This backlog of work prevents the infor-
mation technology resources from focus-
ing on providing new integrated systems,
rather than increasing the complexity of
the environment.

Due to space constraints, CrossTalk was not
able to publish this article in its entirety. However,
it can be viewed in this month’s issue on our Web
site at <www.stsc.hill.af.mil/crosstalk>
along with back issues of CrossTalk .

October 2003 www.stsc.hill.af.mil 29

Online Articles

The prosperity of the nation depends on
achieving global competitiveness in

critical industries, including telecommuni-
cations, transportation, manufacturing,
finance, utilities and energy, medical sys-
tems, and defense. Each critical industry
contains strategically essential value points
that are increasingly dependent on soft-
ware. Achieving global competitiveness
then depends on achieving excellence in
software in each industry.

The Center for National Software
Studies has identified the enterprise capa-
bilities needed to achieve global software

competition. In addition, leading indicators
have been identified to guide assessment
and improvement of these capabilities
along with models to reason about com-
petitiveness.

Global Competitiveness
Maturity Levels
The strategic management of global com-
petitiveness in software calls for setting
direction, providing fuel, and controlling
the business environment including the
supplier, the customer, the competition,

and change and event threats. Accordingly,
enterprise maturity in global software com-
petitiveness is achieved in five levels.
.• Level 1 is the absence of expectation,

achievement, and engagement in the
conversation on global software com-
petitiveness.

Due to space constraints, CrossTalk was not
able to publish this article in its entirety. However,
it can be viewed in this month’s issue on our Web
site at <www.stsc.hill.af.mil/crosstalk>
along with back issues of CrossTalk .

Introducing Global Software Competitiveness

Don O’Neill
Independent Consultant

The vision to be globally competitive in software is accomplished by setting the enterprise direction, providing the fuel, and con-
trolling the business environment, including suppliers, customers, competitors, and event threats. Software competitiveness
revolves around how the software work force is used to achieve customer satisfaction, how innovation is essential to delivering
customer value, and how strategic software management guards against event threats and even exploits change. In association
with the Center for National Software Studies, I have identified the enterprise capabilities needed to achieve global software
competitiveness in several stages. In addition, leading indicators have been identified to guide assessment and improvement of
these capabilities.

Data Warehouse:Your Gateway
to the Information Age

Kelly L. Smith
CASEware Technology, Inc.

Many people consider data warehousing their gateway to the information age. The right approach to this process can deliver
great rewards and bypass the pitfalls experienced by many. In this article, you will discover what a data warehouse is, why
you should use one, and what steps should be involved when implementing one.

Departments

30 CROSSTALK The Journal of Defense Software Engineering October 2003

The February issue of CrossTalk printed an article I
wrote on choosing a software language. At the beginning
of the article, I give some examples of how language
choices are being made. In the original submission, one of
the examples was the bookstore method, in which the
number of books in the bookstore were counted and that
was deemed to be the best language. However, this was
edited out of the final article. Perhaps the editor didn’t
believe it, or maybe it was cut to save some space.

At the 2003 Software Technology Conference in April,
one panel for a military program presented a brief on
their language choice for their program. One of the slides
they presented was a study of the number of books pub-
lished on the various languages. To understand why this is
a bad metric, I invite the reader to tour my home library.
I want to show you books on three of the over 10 lan-
guages represented.

First, I have three books on Java. One is obsolete,
because the language has changed since I bought it. The
one I want you to look at closely is by Deitel and Deitel;
it is a well written college textbook targeting the first soft-
ware language crowd. These days when I hear Simon and
Garfunkel singing about the words of the prophets being
written on the subway walls, I think I see them scribbling
the word Java. There will be many more additions to this
language in the next couple of years, like the addition of
generics. I think I will be buying more books on Java.

My older C++ books say that C++ is a superset of C
and so there is already a large base of programmers using
it. This is a blatant lie. It wasn’t true then and it is not true
now. One book is specific to Borland C++. Two books
are specific to Visual C++, but they are obsolete as that
platform has changed since I got them. My favorite is like
three books in one because it covers three types of C++:
switch (pick your version) {case version_one: do it this
way; break; case version_two; do it that way; break; case
version_three; do it like so; break;}. Old C++ books are
not useful because they don’t have information on excep-
tions or namespaces or other additions to the language.

I have two stacks of magazines that are devoted to this
language, and they are full of articles that tell me how to
use it safely by not using some of the features, or how to
be careful using other features. An interesting note about
these magazines is that a lot of the code in them is actu-
ally Delphi, a language that was advertised as C++ with-
out the problems. C++ claims to be a friend to object-ori-
ented programming, but the friend function violates the
paradigm; unless you believe the book that says it doesn’t.
These books claim that C++ is a strongly typed language,
but I disagree. Besides my books and magazines, I have a
notebook full of coding standards that tell how to make
this language readable and safe to use, but they are full of
contradictions.

I feel that these books and the C++ language have
deceived me. My theory is that this language is still being
used because of some weird Abilene paradox phenome-
non. In the Abilene paradox, a group of people went to

town to eat and when they got back, they discovered that
none of them really wanted to go, but they all went
because they thought the others wanted to go. In more
than one discussion with fellow engineers we all agree that
C++ is a poor language, but we all use it because every-
one else is using it. Engineers have to learn to read this
language. For example, of about 20 books in my library
on neural networks, 10 of them have example code in
C++, even though Ada tasks would be more suited for
building neuro nets. I don’t plan to buy any more books
on C++.

So, let’s look at my Ada books. I have about 25 of
them. Two of them I don’t like. Five of them are now
available on the Internet for free. There are three on the
Internet that I don’t have in hard copy, and I’m not count-
ing them. Seven of them are Ada95, and the rest are
Ada83 books. The old Ada books are still useful because
of the backwards compatibility of the language and the
fact that many of them are also about software engineer-
ing principles as well as the language. The one on distrib-
uted real-time systems is still a good book on distributed
real-time systems, even though Ada95 fixed many of the
issues that were raised.

These books compliment each other. Some authors are
better at explaining access types, others at explaining task-
ing, and still others at explaining scope rules. These books
are honest; they don’t contradict each other.
Unfortunately, our universities are slower to change and
adapt to new technology than our militaries, so not many
schools teach this language.

At the head of my linked list of want-to-have books is
“Real-Time Systems and Programming Languages: Ada95,
Real-Time Java and Real-Time Posix,” by Alan Burns and
Andrew J. Wellings. Should I file this with my Ada books
or my Java books?

It is not the number of books that are published that
count; it is their honesty, consistency, and the fact that
they are endurable that counts. This is a much harder met-
ric to measure. Last week in the bookstore, the number of
books on C# and Java were each more numerous than the
number of books on C++. Still, neither of these lan-
guages is as powerful or as stable as Ada. They are just
more popular. It pleased me to see that there were three
or four vendors at the STC from which I could buy Ada
compilers and programming environments.

Dennis Ludwig
Simulation and Analysis Facility
Wright-Patterson Air Force Base

CrossTalk invites readers to submit their thoughts, comments,
and ideas on its themes and articles as a “Letter to the Editor.”
Simply e-mail letters to <crosstalk.staff@hill.af.mil>.

LETTER TO THE EDITOR

Dear CrossTalk Editor,

Each year the Washington Post’s “Style
Invitational” asks readers to take any

word from the dictionary, alter it by adding,
subtracting, or changing one letter, and
supply a new definition. Some past winners
include the following:

REINTARNATION: Coming back to life
as a hillbilly.

OSTEOPORNOSIS: A degenerate dis-
ease.

KARMAGEDDON: It’s like, when every-
body is sending off all these really bad
vibes, right? And then, like, the Earth
explodes and it’s like, a serious bummer.

GLIBIDO: All talk and no action.

DOPELER EFFECT: The tendency of
stupid ideas to seem smarter when they
come at you rapidly.

Not to be outdone, I beseech
CrossTalk readers to contribute to
CrossTalk’s “Terminology Invitation-
al” by taking any software engineering
term, alter it by adding, subtracting, or
changing a letter (or two), and supplying a
new definition. To get you started, here are
a few easy ones:

AGUILE SOFTWARE DEVELOP-
MENT: A software development method
that favors skillful deceit and trickery over
customer collaboration and working soft-
ware.

APPLECATION: A group of positively
charged programmers who still believe
Apple Computers will achieve global dom-
ination.

BEER REVIEW: The review of after-work
beverages for optimal obliteration after a
long day.

BONDWIDTH: A software engineer’s
capacity to participate in pair programming.

CAPABILITY MANURITY MODEL: A
model that delineates the characteristics of
a process that stinks.

CODEING: Transforming a design into a
program language while under the influ-
ence of a narcotic derived from opium.

COMPUTER-RAIDED SOFTWARE

ENGINEERING: The
automation of methods
for pilfering software
designs.

CUSSTOMERS: Clients
who use profanity to tell
you what they really think
about your software.

DEVILERABLE DOCU-
MENTATION: A wicked user’s
manual that torments its readers.

DONFIGURATION: Re-arrangement of
programmer body parts when a racketeer-
ing application crashes.

DORK BREAKDOWN STRUCTURE: A
listing of all activities and attributes that
renders a software engineer a dork.

FAUX TOLERANCE: The number of
mistakes a manager can withstand before
sacking a software engineer.

FUNCTION PINT ANALAYSIS: A
measurement process that focuses on the
number of pints of ale required to start a
project.

FUNCTIONAL DECOMPOSTITION:
The filtering of system functions to
remove decayed code and improve struc-
ture.

HYPOTEXT MARKUP LANGUAGE: A
programming tool used to develop squalid
spam and pop-up messages.

JOINT SUPPLICATION DESIGN: A
design technique that humbly beseeches
users for requirements and money at the
same time.

KINSPECTIONS: An analysis technique
that relies on visual examination of close
relatives to detect errors and family issues.

METADATE: Something rare for a soft-
ware engineer.

PEST-CLOSURE ACTIVITIES: Activ-
ities that occur after a software system has
been formally accepted and problems
begin.

PROTECT MANAGEMENT: A system
of practices and know-how that shields a
manager from blame on a failed project.

RABID PROTOTYPING: A tumultuous,
uncontrollable system built inexpensively
for demonstration so that end-users can
determine what they don’t want.

RELEASE VEERSION: A software appli-
cation that has been tested and found to be
completely off course from the original
design but released for use anyway.

RETIREMENTS ELICITATION: The
process through which a manager and engi-
neer discover, articulate, and understand
the conditions by which the engineer will
leave a project and retire.

ROBJECT-ORIENTED DESIGN: A
software development technique in which a
system or component is designed to fleece
people on the Internet.

SOFTWARE ENGINEERING PETH-
ICS: A gullible unsophisticated pair pro-
grammer kept for amusement.

TOST ESTIMATION: What 99 percent of
software cost estimates become.

USER WINTERFACE: The look you get
from a customer when your program
freezes up during acceptance testing.

WHISK MANAGEMENT: A quick, nim-
ble, rapid decision-making management
style that whips a project into shape and
works well with agile software development
but may leave egg on your face if not done
right.

Vote for your favorite term at
<garyp@shiminc.com> or send your own
term and definition, and it may get pub-
lished.

– Gary Petersen
Shim Enterprise, Inc.

CrossTalk Terminology Invitational

BACKTALK

October 2003 www.stsc.hill.af.mil 31

CrossTalk / MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Sponsored by the
Computer Resources
Support Improvement

Program (CRSIP)

Published by the
Software Technology

Support Center (STSC)

Oct2003cover.qxd 9/4/03 10:37 AM Page 2

	Front Cover
	Table of Contents
	From the Publisher
	An Information Architecture Strategy
	Warfighter’s Access to Geospatial Intelligence
	Top 5 Quality Software Projects
	Effective Collaboration: People Augmented by Technology
	Serialized Maintenance Data Collection Using DRILS
	Coming Events
	Web Sites
	The Documentation Diet
	Software Architecture as a Combination of Patterns
	Online Articles
	Letter to the Editor
	BackTalk
	Back Cover

